首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 957 毫秒
1.
Absorption and fluorescence properties of aryl substituted porphyrins, 5,10,15,20-tetra-4-oxy(aceticacid)phenylporphyrin (TAPP), 5,10,15,20-tetra-(4-phenoxyphenyl) porphyrin (TPPP), 5,10,15,20-tetra-(3-bromo-4-hydroxyphenyl) porphyrin (TBHPP), and 5,10,15,20-tetra-p-chloromethylphenyl porphyrin (CMPP) were investigated. The UV/vis absorption, fluorescence and excited spectra as the fluorescence quantum yields and fluorescence lifetimes for the compounds were measured in organic solvents (chloroform (CHCl3), tetrahydrofuran (THF)) and immobilized media (PVC film, sol–gel matrix). The fluorescence quantum yields of TAPP and TPPP were higher than the others. The fluorescence lifetimes of all studied porphyrin derivates were found to be fifty percent lower and their fluorescence intensities were increased fifty percent more in both of immobilized mediums, as compared to organic solvents.  相似文献   

2.
Beta,beta'-Fused monoruthenocenylporphyrins, Cp*Ru(III)[1,2-[M(II)-5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)-porphyrinato]-3-methyl-cyclopentadienide] (M = Ni (20), Cu (21), Zn (22)), and bisferrocenoporphyrins, Fe(II) bis[1,2-[M(II)-5,10,15,20-tetraphenylporphyrinato]-3-methyl-cyclopentadienide] (M = Ni (24), Cu (25), Zn (26)), were synthesized and characterized. A novel synthetic approach to beta,beta'-fused porphyrins through Pd(0)-catalyzed [3 + 2] cycloaddition was implemented in this work. UV-vis spectra of these compounds show largely broadened and red-shifted bands (relative to their precursors) indicating potential electronic communication between the attached organometallic moiety and the porphyrin core. The electrochemistry of these molecules suggests significant electronic interactions between the metallocene and metalloporphyrin in molecules 20 and 24. The crystal structure of the bisferrocenoporphyrin 26, Fe(II) bis[1,2-[Zn(II)-5,10,15,20-tetraphenylporphyrinato]-3-methyl-cyclopentadienide], was determined: [Cp2Fe[ZnTPP(THF)]2][Cp2Fe[ZnTPP(THF)ZnTPP(MeOH)]].3MeOH.6THF, M = 3804.35, monoclinic, space group P21/c, a = 33.327(5) A, b = 19.145(3) A, c = 29.603(5) A, beta = 106.309(2) degrees , V = 18128(5) A3, Z = 4. In this molecule, one porphyrin ring is rotated by about 72 degrees with respect to the other in the 5-fold axis of the Cp ring.  相似文献   

3.
合成了吩噻嗪(PTZ)-corrole二元体1-3及其镓(III)配合物4-6.采用稳态吸收与稳态发射及时间分辨的瞬态光谱技术研究了这几种化合物的光物理特性.结合荧光量子产率和荧光寿命计算得到它们的辐射和无辐射速率常数.稳态吸收光谱表明:几种二元体中,corrole镓(III)单元表现出更强的Soret带和Q带.化合物1-3的荧光量子产率分别是0.156、0.134和0.139,辐射速率常数分别为4.02′107、3.47′107和2.89′107s-1.化合物4-6的荧光量子产率分别是0.502、0.443和0.494,辐射速率常数分别为20.90′107、16.78′107和21.11′107s-1.可见,化合物4-6的荧光量子产率和辐射速率常数均高于化合物1-3.然而,化合物4-6的荧光寿命分别是2.40、2.64和2.34ns,低于自由corrole1-3.琼脂糖凝胶电泳实验表明:在光照的条件下,这些吩噻嗪-corrole镓(III)二元体化合物能够把超螺旋DNA(formI)切割成缺刻型DNA(formII).  相似文献   

4.
Eleven silicon phthalocyanines which can be grouped into two homologous series [SiPc[OSi(CH3)2(CH2)(n)N(CH3)2]2, n = 1-6 (series 1), and SiPc[OSi(CH3)2(CH2)3N((CH2)(n)H)2]2, n = 1-6 (series 2)] as well as an analogous phthalocyanine, SiPc[OSi(CH3)2(CH2)3NH2]2, were synthesized. The ground state absorption spectra, the triplet state dynamics, and singlet oxygen quantum yields of 10 of these phthalocyanines were measured. All compounds displayed similar ground state absorption spectral properties in dimethylformamide solution with single Q band maxima at 668 +/- 2 nm and B band maxima at 352 +/- 1 nm. Photoexcitation of all compounds in the B bands generated the optical absorptions of the triplet states which decayed with lifetimes in the hundreds of microseconds region. Oxygen quenching bimolecular rate constants near 2 x 10(9) M(-1) s(-1) were measured, indicating that energy transfer to oxygen was exergonic. Singlet oxygen quantum yields, phi(delta), were measured, and those phthalocyanines in which the axial ligands are terminated by dimethylamine residues at the end of alkyl chains having four or more methylene links exhibited yields near > or = 0.35. Others gave singlet oxygen quantum yields near 0.2, and still others showed singlet oxygen yields of <0.1. The reduced singlet oxygen yields are probably caused by a charge transfer quenching of the 1pi,pi* state of the phthalocyanine by interaction with the lone pair electrons on the nitrogen atoms of the amine termini. In some cases, these can approach and interact with the electronically excited pi-framework, owing to diffusive motions of the flexible oligo-methylene tether.  相似文献   

5.
The synthesis and photophysical study of (C/\N)Pt(II)Q complexes, where C/\N is a bidentate cyclometalating ligand and Q is 8-hydroxyquinoline or quinoline-8-thiol, are presented. The compounds were obtained as a single isomer with N atoms of the C/\N and Q ligands trans-coordinated to the Pt(II) center as shown by X-ray crystallography. These chromophores absorb intensely in the visible region and emit in the deep-red spectral region from a quinolate-centered triplet intraligand charge-transfer excited state. The emission maxima are in the range 675-740 nm, with the quantum yields and lifetimes of up to 0.82% and 5.3 mus, respectively, in deoxygenated organic solvents at room temperature. These complexes are efficient photosensitizers of singlet oxygen in air-saturated solutions, with yields up to 90%.  相似文献   

6.
本文利用表面光电压谱(Surface Photovohage spectroscopy,简称SPS)研究了ZnTPP对TiO_2粉末的光谱敏化,发现用ZnTPP修饰后的TiO_2(金红石和锐钛矿)粉末在可见区420、550和590nm附近有三个光伏响应带,它们分别对应于ZnTPP的Soret、Q(1,0)和Q(0,0)带。经过严格的实验和分析,证明这三个带是由ZnTPP对TiO_2的敏化光电压引起的,而不是ZnTPP自身的光伏响应。在敏化效果上,亚稳的锐钛矿优于金红石。同时,我们对这种光敏表面的光诱导电荷转移机制和SPS作为一种研究光谱敏化方法的可行性进行了讨论。  相似文献   

7.
The influence of the thiophene ring on the ground and excited state properties of the porphyrin ring is investigated, when substituted at the meso-position. A series of mono-, di-, tri-, and tetra- meso-thien-2-yl porphyrins are studied and discussed with respect to the reference compounds zinc(II)-5,10,15,20-tetra(thien-2'-yl)porphyrin ( 1a) and zinc(II)-5,10,15,20-tetraphenylporphyrin (ZnTPP). The extended conjugated system zinc(II)-5-(5'-(5'-ethynyl-2'-thiophenecarboxaldehyde)thien-2'-yl)-10,15,20-triphenylporphyrin ( 4d) is also studied and shows enhanced charge transfer character due to the presence of the terminal aldehyde accepting group. A detailed analysis of ground and excited state UV-vis absorption, steady-state and time-resolved fluorescence, laser flash photolysis, and electrochemical data all point toward substantial electronic communication between the central Zn(II) porphyrin ring and the meso-thien-2-yl substituents, which is evident from excited state charge transfer character.  相似文献   

8.
Photochemical and photophysical measurements were conducted on peripheral and non-peripheral tetrakis- and octakis(4-benzyloxyphenoxy)-substituted zinc phthalocyanines (1, 2 and 3). General trends are described for photodegradation, and fluorescence quantum yields, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulphoxide (DMSO) and toluene. The fluorescence of the complexes is quenched by benzoquinone (BQ), and fluorescence quenching properties are investigated in DMSO and toluene. The effects of the solvents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (1, 2 and 3) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications.  相似文献   

9.
《Liquid crystals》2000,27(2):211-214
We observed that the planar aligned nematic liquid crystal (5CB) doped with a volume fraction of 1% of FeTPPCl [5,10,15,20-tetraphenylporphyriniron(III)chloride] or MnTPPCl [5,10,15,20-tetraphenylporphyrinmanganese(III)chloride] dramatically decreased the critical magnetic field for the magnetic field induced Freedericksz transition, while 5CB doped with ZnTPP [5,10,15,20-tetraphenylporphyrinzinc(II)] revealed no such effect, when compared with pure 5CB. In the guest-host (5CB) system, FeTPPCl and MnTPPCl as guests are both strong paramagnetic materials with an interaction through coordination of the -CN group in 5CB onto the metal ion of the porphyrin. As a result, the 5CB molecules are dragged to reorientate under a static magnetic field, while ZnTPP is a diamagnetic material without such a property. This phenomenon concerning magneto-optical components could be useful in liquid crystal displays.  相似文献   

10.
We describe a two-step conversion of C-alkylated zinc chlorins to zinc oxochlorins wherein the keto group is located in the reduced ring (17-position) of the macrocycle. The transformation proceeds by hydroxylation upon exposure to alumina followed by dehydrogenation with DDQ. The reactions are compatible with ethyne, iodo, ester, trimethylsilyl, and pentafluorophenyl groups. A route to a spirohexyl-substituted chlorin/oxochlorin has also been developed. Representative chlorins and oxochlorins were characterized by static and time-resolved absorption spectroscopy and fluorescence spectroscopy, resonance Raman spectroscopy, and electrochemistry. The fluorescence quantum yields of the zinc oxochlorins (Phi(f) = 0.030-0.047) or free base (Fb) oxochlorins (Phi(f) = 0.13-0.16) are comparable to those of zinc tetraphenylporphyrin (ZnTPP) or free base tetraphenylporphyrin (FbTPP), respectively. The excited-state lifetimes of the zinc oxochlorins (tau = 0.5-0.7 ns) are on average 4-fold lower than that of ZnTPP, and the lifetimes of the Fb oxochlorins (tau = 7.4-8.9 ns) are approximately 40% shorter than that of FbTPP. Time-resolved absorption spectroscopy of a zinc oxochlorin indicates the yield of intersystem crossing is >70%. Resonance Raman spectroscopy of copper oxochlorins show strong resonance enhancement of the keto group upon Soret excitation but not with Q(y)()-band excitation, which is attributed to the location of the keto group in the reduced ring (rather than in the isocyclic ring as occurs in chlorophylls). The one-electron oxidation potential of the zinc oxochlorins is shifted to more positive potentials by approximately 240 mV compared with that of the zinc chlorin. Collectively, the fluorescence yields, excited-state lifetimes, oxidation potentials, and various spectral characteristics of the chlorin and oxochlorin building blocks provide the foundation for studies of photochemical processes in larger architectures based on these chromophores.  相似文献   

11.
We observed that the planar aligned nematic liquid crystal (5CB) doped with a volume fraction of 1% of FeTPPCl [5,10,15,20-tetraphenylporphyriniron(III)chloride] or MnTPPCl [5,10,15,20-tetraphenylporphyrinmanganese(III)chloride] dramatically decreased the critical magnetic field for the magnetic field induced Freedericksz transition, while 5CB doped with ZnTPP [5,10,15,20-tetraphenylporphyrinzinc(II)] revealed no such effect, when compared with pure 5CB. In the guest-host (5CB) system, FeTPPCl and MnTPPCl as guests are both strong paramagnetic materials with an interaction through coordination of the -CN group in 5CB onto the metal ion of the porphyrin. As a result, the 5CB molecules are dragged to reorientate under a static magnetic field, while ZnTPP is a diamagnetic material without such a property. This phenomenon concerning magneto-optical components could be useful in liquid crystal displays.  相似文献   

12.
The synthesis, photophysical and photochemical properties of the tetra- and octa-[4-(benzyloxyphenoxy)] substituted gallium(III) and indium(III) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H NMR spectroscopy and electronic spectroscopy. General trends are described for quantum yields of photodegredation, fluorescence quantum yields and lifetimes, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulfoxide (DMSO). Substituted indium phthalocyanine complexes (7b9b) showed much higher quantum yields of triplet state and shorter triplet lifetimes, compared to the substituted GaPc derivatives due to enhanced intersystem crossing (ISC) in the former. The gallium and indium phthalocyanine complexes showed phototransformation during laser irradiation due to ring reduction. The singlet oxygen quantum yields (ΦΔ), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.51 to 0.94. Thus, these complexes show potential as photodynamic therapy of cancer.  相似文献   

13.
Photophysical behavior of a zinc(II) tetraphenylporphyrin (ZnTPP) moiety in a copolymer of 0.1 mol % zinc(II) 5-[4-(6-methacryloyloxyhexanoyloxy)phenyl]-10,15,20-triphenylporphynate (ZnTPP-C5-MA) and 99.9 mol % cholesteryl 6-methacryloyloxyhexanate (Chol-C5-MA) was investigated in comparison with that of monomeric ZnTPP-C5-MA. Pendant cholesterol (Chol) groups in the copolymer form stacks in n -hexane (a poor solvent for the copolymer), while no Chol stacks are formed in benzene (a good solvent). The absorption maxima of the Soret and Q bands of monomeric ZnTPP-C5-MA were solvent dependent, i.e. the maxima in n -hexane were 7.6 nm shorter than those in benzene. In contrast, no such solvent dependence was observed for the polymer-bound ZnTPP moiety. Spectral profiles for the fluorescence bands for the polymer-bound ZnTPP moiety and monomeric ZnTPP-C5-MA were very different in n -hexane, i.e. the relative intensity of the 0–0 to 0–1 fluorescence bands for the former was 0.52 while that for the latter was 1.10. The triplet excited lifetime for the polymer-bound Zn-TPP moiety at room temperature was much longer in n -hexane (22 ms) than in benzene (3.7 ms), while the fluorescence lifetime at room temperature was slightly longer in n -hexane (2.52 ns) than in benzene (2.09 ns). The polymer-bound ZnTPP moiety emitted phosphorescence and E-type delayed fluorescence in n-hexane at room temperature, arising from the long triplet lifetime. Fluorescence quenching for the polymer-bound ZnTPP moiety by vitamin-K3 was suppressed in n -hexane, as compared to the quenching of the monomer. All these observations indicate that the ZnTPP chromophores in the copolymer are "protected" in the Chol stacks in n-hexane, leading to an isolation of ZnTPP from the bulk solution phase.  相似文献   

14.
The synthesis, photophysical and photochemical properties of the 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}oxy) and 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}thio) zinc(ii) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, (1)H and (13)C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, fluorescence and triplet excited state quantum yields, and triplet state and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). The fluorescence of the complexes was quenched by benzoquinone (BQ). The effects of the substitution on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (6, 7 and 8) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The substituted Zn(II) phthalocyanines showed high triplet and singlet oxygen quantum yields. High singlet oxygen quantum yields are very important for Type II mechanism. Thus, these complexes show potential as Type II photosensitizers.  相似文献   

15.
Porphine bearing triphenylamine (TPA) pendant groups and their zinc complexes, zinc meso-tetra-p-(di-p-phenylamino)phenylporphyrin (ZnTDPAPP) and zinc meso-tetra-p-(di-p-tolylamino)phenylporphyrin (ZnTDTAPP) are synthesized and their spectral and electrochemical characteristics are studied. Zinc meso-tetraphenylporphyrin (ZnTPP) and zinc meso-tetra-p-aminophenylporphyrin (ZnTAPP) are also used as reference complexes. The B and Q bands of ZnTDPAPP and ZnTDTAPP are located at higher wavelengths and the bandwidths become broader compared with those of ZnTPP and ZnTAPP, indicating the peripheral TPA affects the electronic configuration of zinc porphyrins. Upon excitation in CH2Cl2 at room temperature, the compounds exhibit intramolecular singlet energy transfer from the TPA to the porphyrin core, and emission from the porphyrins are observed. Both ZnTDPAPP and ZnTDTAPP are easier to be oxidized and harder to be reduced than ZnTPP, in agreement with the strong electron-donating effect of the TPA groups. Extra waves corresponding to the oxidation of TPA substituents are also observed. The cation radical ZnTDTAPP+* exhibits an absorption spectrum very different from the typical spectra for porphyrin cation radicals. The NIR absorption band at 1296 nm indicates the electron transfer occurs intramolecularly. The above results evince the ability of TPA to modulate the electronic structure of zinc porphyrins.  相似文献   

16.
The behavior of the absorbance profiles of free‐base 5,10,15,20–tetraphenylporphyrin (TPPH2) and zinc 5,10,15,20‐tetraphenylporphyrinate (ZnTPP) under exposure to HCl vapors was investigated to establish in detail the mechanism of protonation of these porphyrinic compounds and their potential for use as HCl sensors. We show that the intensities of diprotonated tetraphenylporphyrin absorption bands that arise at 444–446 and 662–666 nm increase as a function of the HCl exposure time. Reactions of free‐base meso‐tetraphenylporphyrin protonating and of zinc meso‐tetraphenylporphyrinate demetalation and subsequent protonating are discussed, and the solutions of the corresponding kinetic equations and respective reaction rates are also obtained. Finally, from a theoretical analysis we deduce the presence of intermediated monoprotonated porphyrin that helps us to explain why the isosbestic point in the TPPH2 reaction with HCl is not well defined.  相似文献   

17.
Metal-free mononuclear, dinuclear and trinuclear phthalocyanines were prepared by a mixed cyclotetramerisation of a 1,2,4,5-tetracyanobenzene derivative and 4,5-bis(2,6-dimethylphenoxy)phthalonitrile. For the first time, a pi-electron-conjugated trinuclear phthalocyanine was synthesised with phthalocyanine units connected by common annulated benzene rings. The Q band of the trinuclear compound in solution occurs at lambda = 944 nm whereas those of the dinuclear and mononuclear compounds are at lambda = 853/830 and 701/664 nm, respectively. Fluorescence quantum yields, fluorescence lifetimes and singlet-oxygen quantum yields of the compounds were determined.  相似文献   

18.
A series of axial di-substituted silicon(IV) phthalocyanines with electron-donating and electron-withdrawing properties were synthesized. The compounds were characterized by elemental analysis, 1H NMR, IR, and ESI-MS. The effect of axial ligands on the photophysical properties of silicon phthalocyanines was studied by UV/Vis, steady-state and time-resolved fluorescence spectroscopic analyses. Compared with silicon phthalocyanines with electron-donating properties, silicon phthalocyanines with electron-withdrawing properties could expand the π-conjugation in the dyes, resulting in a redshift of Q bands, lower fluorescence emission intensity and fluorescence quantum yields, but increasing fluorescence lifetimes. These results strongly suggest that the molecular design of phthalocyanines is essential for construction of photoactive materials.  相似文献   

19.
Spectral, luminescent, and photophysical properties of the BF2 chelates with dichloroand dibromotetraphenyl-ms-azadipyrromethene (derivatives of tetraphenyl-aza-BODIPY) have been studied experimentally and theoretically by quantum chemistry methods. The positions of fluorescence bands, quantum yields, and lifetimes were measured experimentally. The rate constants of intramolecular photophysical processes have been estimated, and the quantum yields of fluorescence and phosphorescence and the lifetimes of excited states have been calculated. Complete energy schemes of electronically excited states and photophysical processes in the molecules of the compounds under study have been built on the basis of calculation results. The decrease in the fluorescence quantum yields upon excitation into the second absorption band and the absence of the phosphorescence of the chelates have been explained.  相似文献   

20.
The kinetics of complex formation between zinc and 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra(4-hydroxyphenyl)porphyrin in acetonitrile is studied in the temperature range from 298 to 318 K. The fluorescent properties of these compounds are examined, the emission in the red region of the spectrum is measured, and the fluorescence quantum yields are determined. It is found that although the electronic absorption spectra of the studied compounds are almost identical, hydroxyl substituents are observed to have a considerable effect on the chelating ability of ligands. The rate constant of the formation of ZnT(4-OH-Ph)P is thus approximately three times higher than that of ZnTPhP, with the energy consumption being lower (about 20 kJ mol–1). The calculated fluorescence quantum yields of H2TPhP, H2T(4-OH-Ph) P, ZnTPhP, and ZnT(4-OH-Ph)P in acetonitrile are half those in toluene, while the ratio between the quantum yields of ligands and their metal complexes is a constant equal to approximately 3 and does not depend on which solvent is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号