首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Alpha-tocopherol (alpha-TOH) can be electrochemically oxidized in CH(3)CN containing Bu(4)NPF(6) in a chemically reversible two-electron/one-proton (ECE) process to form the phenoxonium cation (alpha-TO(+)) that is stable for at least several hours at 243 K. In the presence of up to approximately 1% CF(3)SO(3)H, alpha-TO(+) exists in equilibrium with the alpha-tocopherol cation radical (alpha-TOH(+)(*)), whereas at concentrations between approximately 1-3% CF(3)SO(3)H the electrochemical oxidation of alpha-TOH occurs by close to one-electron to form alpha-TOH(+)(*).alpha-TOH(+)(*) can be further oxidized in a one-electron process to form the alpha-tocopherol dication (alpha-TOH(2+)). The identity and stability of the phenolic cationic compounds were determined by a combination of electrochemical (cyclic voltammetry and controlled potential electrolysis) and in situ spectroscopic (UV-vis-NIR, FTIR, EPR, and NMR) analysis.  相似文献   

2.
[reaction: see text] Alpha-tocopherol (alpha-TOH), the main oil component making up vitamin E, and its nonnatural solid 6-hydroxy-2,2,5,7,8-pentamethylchroman and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid structurally related analogues were oxidized quantitatively with 2 mol equiv of NO+ SbF6(-) in CH3CN at 233 K to form phenoxonium cations (alpha-TO+ SbF6(-)) in a chemically reversible two-electron/one-proton process. Solution-phase infrared spectroscopy, 1H and 13C NMR spectroscopy, and corresponding theoretical calculations of the spectroscopic data using density-based and wave-function-based models support the identity of the remarkably stable phenoxonium cations. The presence of an oxygen atom in the para position to the hydroxyl group and the chromanol ring structure appear to be important factors in stabilization of the phenoxonium ions, which raises the interesting possibility that the cations play a crucial role in the mode of action of vitamin E in biological systems. Although the phenoxonium cations are reactive toward nucleophiles such as water, they may be moderately stable in the hydrophobic (lipophilic) environment where vitamin E is known to occur naturally.  相似文献   

3.
A series of chroman-6-ol and dihydrobenzofuran-5-ol based compounds with structures similar to vitamin E were examined by cyclic voltammetry and controlled potential electrolysis. The compounds displayed characteristic voltammetric features that enabled their electrochemical behavior to be interpreted in relation to the oxidation mechanism for vitamin E. The electrochemical experiments indicated the presence of several oxidized species: cation radicals, phenoxyl radicals, phenoxonium ions, hemiketals, and p-quinones, whose lifetimes varied depending on the extent of methylation of the aromatic ring (R(1), R(2), R(3)) and the nature of substituents R(4) and R(5).  相似文献   

4.
Variable scan rate (0.1-500 V s(-1)) cyclic voltammetry experiments were performed on a series of model tocopherol (vitamin E) compounds with differing degrees of methyl substitution around the aromatic (phenolic) ring. alpha-Tocopherol, with a fully methylated aromatic ring, produced stable phenoxonium cations upon oxidation in CH3CN, and was modeled via an ECE mechanism (where "E" represents an electron transfer and "C" a chemical step). Compounds with less methyl substitution around the aromatic ring were more reactive following oxidation, and formed additional oxidation products (hemiketals and p-quinones), and were modeled according to a more complicated ECECC mechanism. The equilibrium and rate constants associated with the chemical steps were estimated by digital simulations of the variable scan rate data over a range of temperatures ( T = 253-313 K) in acetonitrile containing 0.5 M Bu4NPF6 as the supporting electrolyte. The relative lifetimes of the phenoxonium cations of tocol and the tocopherols were compared with theoretical results obtained from molecular orbital calculations.  相似文献   

5.
The favored fragmentation pathway for protonated and alkylated pyridinium cations of the general formula p-XC(6)H(4)CH(2)CH(2)CH=CH Py(+)R (R=H, Me; Py=pyridine) is a C-C homolytic cleavage. The tendency to form radicals is higher for alkylated pyridinium cations than for the protonated ones that can also afford closed-shell products. Theoretical calculations show that the singlet-triplet gap for transient structures with an elongated benzylic C-C bond is very low and the formation of radicals may result from mixing of these states. In addition to the notable substituent effect on the fragmentation efficiency of the cations under study, calculated results show a clear substituent effect on the singlet-triplet transitions. We also observe that triphenylphosphonium cations behave notably different. Thus, the pyridinium system that contains a p-chloro benzyl moiety loses a benzyl radical readily while the analogous triphenylphosphonium cation is very stable under the same conditions.  相似文献   

6.
Chang CC  Yueh H  Chen CT 《Organic letters》2011,13(10):2702-2705
A series of arylaminofluorene derivatives (DTFA-1, TTFA-2, TAFB-3, and TAFA-4) were synthesized, and the generation of their corresponding arylaminium cation radicals was readily achieved by Cu(ClO(4))(2) in CH(3)CN. Moreover, the cation radicals were stable at ambient temperature with substantially long life times and exhibited distinct colors. The oxidation mechanism and spectroscopic features of the resulting cation radicals were probed by UV-vis-NIR spectroscopy and electron spin resonance experiments.  相似文献   

7.
Crystallographic and luminescence studies on salts of the two-coordinate carbene cation, [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)](+), demonstrate the ability of the cation to exist in three different states of aggregation. In colorless, non-luminescent [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)]Cl the cation crystallizes as a monomer with the nearest gold(i) center 6.7890(11) A away. Colorless, luminescent [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)]AsF(6) forms dimers with an AuAu separation of 3.1288(4) A. These dimers form weakly associated extended chains of cations with additional AuAu separations of 3.6625(5) A. [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)]PF(6) is isostructural. Yellow, luminescent [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)](3)(AsF(6))(2)Cl.0.5(H(2)O)(2) and [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)](3)(PF(6))(2)Cl.0.5(H(2)O)(2) form trimers that further aggregate into extended chains with rather short AuAu separations of 3.1301(14) A, 3.1569(14) A and 3.1415(14) A. Absorption, emission and excitation spectra are reported for these salts. The excitation and emission results from the interactions between the gold centers and involves transitions between the filled d(z)((2)) band and the empty p(z) bands with the z axis pointing along the chain of cations.  相似文献   

8.
The kinetics and mechanisms of the reactions of 3-(4-X)-phenyl-1,5-diphenyl-verdazyl radicals where X = Cl, H, CH3 and CH3O with [Co(N-N)3]3+, N-N = 2,2'-bipyridyl (bpy), 1,10-phenanthroline (phen) and 4,7-dimethyl-1,10-phenanthroline (4,7-Me2phen), have been investigated in acetonitrile at 25 degrees C and ionic strength 0.05 mol dm(-3)(nC4H9)4NPF6 using stopped flow spectrophotometry. In all cases, transfer of one electron from the radical takes place resulting in the production of a Co(II) species and a verdazylium cation. The electron transfer occurs by an outer-sphere mechanism and the reactions appear to be consistent with Marcus theory. The self-exchange rate constants for the verdazyl-verdazylium cation have been estimated and are of the order of 3.4(+/-1.9) x 10(7) dm(3) mol(-1) s(-1). This rate constant is consistent with the fact that the reactions of [Ru(bpy)3]3+ with verdazyl radicals are too rapid to be investigated by stopped flow spectrophotometry.  相似文献   

9.
李来才  邹勤  田安民 《化学学报》2003,61(10):1524-1527
用量化学UMP2方法,在6-311++G**基组水平上研究了CH_2X(X=H,FCI)与臭氧反 应机理,全参数优化了反应过程中反应物、中间体、过渡态和产物的内何构型,在 UQCISD(T)/6-311++G**水平上计算了它们的能量,并对它们进行了振动分析,以 确定中间体和过渡态的直实性。从CH_2X(X=H,FCI)与O_3的反应机理的研究结果看 ,它们与O_3反应的活性都比较强,相对而言,活性大小顺序为CH_2F>CH_3> CH_2CI,也就是说,CH_2F自由基与臭氧间的反应活性最强,对大气臭氧的损耗将 是最大的。同时研究还发现CH_2X(X=H,FCI)系列自由基与O_3的反应都是强放热反 应。  相似文献   

10.
A new method for investigating the mechanisms of nitric oxide release from NO donors under oxidative and reductive conditions is presented. Based on the fragmentation of N-nitrosoamines, it allows generation and spectroscopic characterization of nitrenium cations, amide anions, and aminyl radicals. X-irradiation of N-nitroso-N,N-diphenylamine 1 in Ar matrices at 10 K is found to yield the corresponding radical ions, which apparently undergo spontaneous loss of NO* under the conditions of this experiment (1*+ seems to survive partially intact, but not 1*-). One-electron reduction or oxidation of 1 is observed upon doping of the Ar matrix with DABCO, an efficient hole scavenger, or CH2Cl2, an electron scavenger, respectively. The resulting diphenylnitrenium cation, 2+, and the diphenylamide anion, 2-, were characterized by their full UV-vis and mid-IR spectra. The best spectra of 2+ and 2- were obtained if 1 was homolytically photodissociated to diphenylaminyl radical 2* and NO* prior to ionization. 2+ and 2- are bleached on irradiation at <340 nm to form 2* or, in part, 1. DFT and CCSD quantum chemical calculations predict that the dissociation of 1*+ and 1*- is slightly endothermic, a tendency which is partially reversed if one allows for complexation of the resulting 2+ (and, presumably, 2-) with NO*. The method described in this work should prove generally applicable to the generation and study of nitrenium cations and amide anions R2N+/- under matrix and ambient conditions (i.e., in solution).  相似文献   

11.
采用循环伏安法和原位红外光谱技术研究了2,4-二氯苯酚在Pt电极上的电化学氧化降解反应,结合Fukui函数值预测了2,4-二氯苯酚在电化学氧化过程中的反应位点. 结果表明,Pt电极对2,4-二氯苯酚有良好的电催化活性,2,4-二氯苯酚在电极表面反应主要有3个途径:直接通过电化学反应脱去氯离子,生成苯酚;在·OH的进攻下,C—Cl键断裂,4位Cl较2位Cl先脱去,生成苯二酚,并可进一步氧化生成苯醌以及不饱和羧酸;在·OH的进攻下发生苯环开环反应,生成含氯不饱和羧酸. 在1700 mV左右,2,4-二氯苯酚可经电化学氧化生成CO2.  相似文献   

12.
Porphine bearing triphenylamine (TPA) pendant groups and their zinc complexes, zinc meso-tetra-p-(di-p-phenylamino)phenylporphyrin (ZnTDPAPP) and zinc meso-tetra-p-(di-p-tolylamino)phenylporphyrin (ZnTDTAPP) are synthesized and their spectral and electrochemical characteristics are studied. Zinc meso-tetraphenylporphyrin (ZnTPP) and zinc meso-tetra-p-aminophenylporphyrin (ZnTAPP) are also used as reference complexes. The B and Q bands of ZnTDPAPP and ZnTDTAPP are located at higher wavelengths and the bandwidths become broader compared with those of ZnTPP and ZnTAPP, indicating the peripheral TPA affects the electronic configuration of zinc porphyrins. Upon excitation in CH2Cl2 at room temperature, the compounds exhibit intramolecular singlet energy transfer from the TPA to the porphyrin core, and emission from the porphyrins are observed. Both ZnTDPAPP and ZnTDTAPP are easier to be oxidized and harder to be reduced than ZnTPP, in agreement with the strong electron-donating effect of the TPA groups. Extra waves corresponding to the oxidation of TPA substituents are also observed. The cation radical ZnTDTAPP+* exhibits an absorption spectrum very different from the typical spectra for porphyrin cation radicals. The NIR absorption band at 1296 nm indicates the electron transfer occurs intramolecularly. The above results evince the ability of TPA to modulate the electronic structure of zinc porphyrins.  相似文献   

13.
The reactivity of the cation radical of (4-MeOC6H4)2CH2 photosensitized by 1,4-benzoquinone (BQ), 2,5-dichloro-1,4-benzoquinone (Cl2BQ), and tetrachloro-1,4-benzoquinone (chloranil, CA) was investigated in acetonitrile. The main photoreaction products obtained by steady-state irradiation were identified to be: (4-MeOC6H4)2-CHOC6H4OH, sensitized by BQ; (4-MeOC6H4)2CHCl, sensitized by Cl2BQ; (4-MeOC6H4)2CHOH, sensitized by CA. The mechanism of their formation was investigated by nanosecond laser flash photolysis that allowed transient species (radical ions, neutral radicals, and ions) to be detected and characterized in terms of absorption spectra, formation quantum yields, and decay rate constants. For all systems, the interaction between the triplet quinone (Q) and (4-MeOC6H4)2CH2 produced the corresponding radical ions (quantum yield phi > or = 0.72) which mainly decay by back electron transfer processes. Less efficient reaction routes for the radical ions Q*- and (4-MeOC6H4)2CH2*+ were also: i) the proton-transfer process with the formation of the radical (4-MeOC6H4)2CH* by use of Cl2BQ; ii) the hydrogen-transfer process with the formation of the cation (4-MeOC6H4)2CH+ in the case of CA. Instead. BQ sensitized a much higher yield of BOH* and (4-MeOC6H4)2CH*, mainly by the direct interaction of triplet BQ with (4-MeOC6H4)2CH2. It was also shown that the presence of salts decreases significantly the rate of the back electron transfer process and enhances the quantum yields of formation of the neutral radicals and ions when Cl2BQ and CA are used, respectively. The behavior of BQ*-, Cl2BQ*-, and CA*- appears to be mainly determined by the Mulliken charges on the oxygen atom obtained from quantum mechanical calculations with the model B3LYP/6-311G(d,p). Spin densities seem to be much less important.  相似文献   

14.
Four new triphenylamine ligands with different substituents in the para position and their corresponding copper(II) complexes are reported. This study includes their structural, spectroscopic, magnetic, and electrochemical properties. The complexes possess a dinuclear copper(II) paddle-wheel core, a building unit that is also common in metal-organic frameworks. Electrochemical measurements demonstrate that the triphenylamine ligands and the corresponding complexes are susceptible to oxidation, resulting in the formation of stable radical cations. The square-wave voltammograms observed for the complexes are similar to those of the ligands, except for a slight shift in potential. Square-wave voltammetry data show that, in the complexes, these oxidations can be described as individual one-electron processes centered on the coordinated ligands. Spectroelectrochemistry reveals that, during the oxidation of the complexes, no difference can be detected for the spectra of successively oxidized species. For the absorption bands of the oxidized species of the ligands and complexes, only a slight shift is observed. ESR spectra for the chemically oxidized complexes indicate ligand-centered radicals. The copper ions of the paddle-wheel core are strongly antiferromagnetic coupled. DFT calculations for the fully oxidized complexes indicate a very weak ferromagnetic coupling between the copper ions and the ligand radicals, whereas a very weak antiferromagnetic coupling is found among the ligand radicals.  相似文献   

15.
Smog chamber/Fourier transform infrared (FTIR) and laser-induced fluorescence (LIF) spectroscopic techniques were used to study the atmospheric degradation of CH3CHF2. The kinetics and products of the Cl(2P(3/2)) (denoted Cl) atom- and the OH radical-initiated oxidation of CH3CHF2 in 700 Torr of air or N2; diluents at 295 +/- 2 K were studied using smog chamber/FTIR techniques. Relative rate methods were used to measure k(Cl + CH3CHF2) = (2.37 +/- 0.31) x 10(-13) and k(OH + CH3CHF2) = (3.08 +/- 0.62) x 10(-14) cm3 molecule(-1) s(-1). Reaction with Cl atoms gives CH3CF2 radicals in a yield of 99.2 +/- 0.1% and CH2CHF2 radicals in a yield of 0.8 +/- 0.1%. Reaction with OH radicals gives CH3CF2 radicals in a yield >75% and CH2CHF2 radicals in a yield <25%. Absolute rate data for the Cl reaction were measured using quantum-state selective LIF detection of Cl(2P(j)) atoms under pseudo-first-order conditions. The rate constant k(Cl + CH3CHF2) was determined to be (2.54 +/- 0.25) x 10(-13) cm3 molecule(-1) s(-1) by the LIF technique, in good agreement with the relative rate results. The removal rate of spin-orbit excited-state Cl(2P(1/2)) (denoted Cl) in collisions with CH3CHF2 was determined to be k(Cl + CH3CHF2) = (2.21 +/- 0.22) x 10(-10) cm3 molecule(-1) s(-1). The atmospheric photooxidation products were examined in the presence and absence of NO(x). In the absence of NO(x)(), the Cl atom-initiated oxidation of CH3CHF2 in air leads to formation of COF2 in a molar yield of 97 +/- 5%. In the presence of NO(x), the observed oxidation products include COF2 and CH3COF. As [NO] increases, the yield of COF2 decreases while the yield of CH3COF increases, reflecting a competition for CH3CF2O radicals. The simplest explanation for the observed dependence of the CH3COF yield on [NO(x)] is that the atmospheric degradation of CH3CF2H proceeds via OH radical attack to give CH3CF2 radicals which add O2 to give CH3CF2O2 radicals. Reaction of CH3CF2O2 radicals with NO gives a substantial fraction of chemically activated alkoxy radicals, [CH3CF2O]. In 1 atm of air, approximately 30% of the alkoxy radicals produced in the CH3CF2O2 + NO reaction possess sufficient internal excitation to undergo "prompt" (rate >10(10) s(-1)) decomposition to give CH3 radicals and COF2. The remaining approximately 70% become thermalized, CH3CF2O, and undergo decomposition more slowly at a rate of approximately 2 x 10(3) s(-1). At high concentrations (>50 mTorr), NO(x) is an efficient scavenger for CH3CF2O radicals leading to the formation of CH3COF and FNO.  相似文献   

16.
The electrochemical oxidations of (C6H6)Cr(CO)3, 1, and (C5H5)Co(CO)2, 2, when carried out in CH2Cl2/[NBu4][B(C6F5)4], allow the physical or chemical characterization of the 17-electron cations 1+ and 2+ at room temperature. The generation of 1+ on a synthetic time scale permits an electrochemical "switch" process involving facile substitution of CO by PPh3 as a route to (C6H6)Cr(CO)2PPh3. The radical 2+ undergoes a second-order reaction to give a product assigned as the metal-metal bonded dimer dication [Cp2Co2(CO)4]2+. The new anodic chemistry of these often-studied 18-electron compounds is made possible by increases in the solubility and thermal stability of the cation radicals in media containing the poorly nucleophilic anion [B(C6F5)4]-, TFAB.  相似文献   

17.
The structures, infrared spectra, and electronic properties of the N7,N9-dimethylguaninium chloride have been studied. The interaction of one cation with one to four Cl anions and one Cl anion with two cations were investigated. Fifteen stable conformers are obtained. It is found that there are four acidic regions in the vicinity of the guaninium cations. In these regions, the cation could H-bond with one to three Cl anions but no more than three nearest anions. One Cl anion could H-bond with two cations. Additionally, evidence of a Cl...pi interaction between the anion and cation is observed. Among these structures, one cation interaction with two anions and two cations interaction with one anion have the larger interaction energies than the other series. Natural bond orbital analyses and molecular orbitals reveal that the charge transfer from anion(s) to the cation(s) occurs mainly through either the Cllp --> sigma C-H, Cllp --> sigma N-H, or Cllp --> pi C8-N7 interactions. The interaction between Cl and sigma (C/N-H) or pi C-N produces a small bond order. This indicates that the Cl...H (Cl...pi) interaction exhibits a weak covalent character and suggests a strong ionic H-bond (Cl...pi bond). What's more, formation of Cl...H/Cl...pi bond decreases the bond order of the associated C/N-H bond or C8-N7 bond. In addition, examination of vibrational spectrum of each conformer explains the origin of H-bonding character.  相似文献   

18.
Abstract— The 193 nm photoionization of aqueous indole, A'-meth-ylindole and tryptophan–as a function of pH and under several saturating gas conditions–has been studied by laser photolysis using optical and conductometric detection methods. Monophotonic ionization leads to production of the cation radicals and hydrated electrons, the quantum yield of electron ejection is 0.3–0.4. The cation radicals have pKa values of 4.5, <5 and 4.5 for indole, N -methylindole and tryptophan, respectively. Above these pH values, the cation radical deprotonate rapidly, having lifetimes of 1.0, ≅6 and 1.1 μs, respectively. Under N2O, neutral indolyl radical production is accompanied by formation of an OH adduct radical (<1 μs). The conductivity results in Ar- and N2O-saturated solution support the deprotonation mechanism and indicate that in the acidic pH range, the cation radical decays by release of protons with kinetics on the millisecond time scale.  相似文献   

19.
We have established that bipyridinium radicals can be reversibly π‐dimerized under the combined effects of chemical (proton transfer) and electrochemical (electron transfer) stimuli. Our investigations also led to the discovery that a bis‐pyridinyl appended calixarene intermediate is involved in a fully reversible redox‐triggered σ‐dimerization process. The structure of the most stable intramolecular σ‐dimer was provided by computational chemistry and its complete conversion into a noncovalent π‐dimer could be triggered chemically by addition of protons, leading to the formation of protonated cation radicals. Theoretical data collected with the N‐methylated and N‐protonated π‐dimers also support the existence of multivariant orientations in π‐bonded dimers of viologen cation‐radicals.  相似文献   

20.
The direct fusion of a diphenylmethane segment to a NiII 5,10,15‐triarylporphyrin with three linkages furnished an air‐ and moisture‐stable neutral radical through unexpected and spontaneous oxidation. This radical was demetalated by treatment with H2SO4 and CF3CO2H to provide the corresponding free‐base radical. These porphyrin radicals are very stable owing to spin delocalization and have been fully characterized through UV/Vis/NIR absorption spectroscopy, X‐ray crystallographic analysis, magnetic susceptibility measurements, electrochemical studies, laser‐based ultrafast spectroscopic studies, and theoretical calculations. They were chemically oxidized and reduced to the corresponding cation and anion but did not react with hydrogen‐atom donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号