首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We propose a new layered-ternary Ta4SiC3 with two different stacking sequences (α- and β-phases) of the metal atoms along c axis and study their structural stability. The mechanical, electronic and optical properties are then calculated and compared with those of other compounds M4AX3 (M=V, Nb, Ta; A=Al, Si and X=C). The predicted compound in the α-phase is found to possess higher bulk modulus than these compounds. The independent elastic constants of the two phases are also evaluated and the results discussed. The electronic band structures for α- and β-Ta4SiC3 show metallic conductivity. Ta 5d electrons are mainly contributing to the total density of states (DOS). We see that the hybridization peak of Ta 5d and C 2p lies lower in energy and the Ta 5d-C 2p bond is stronger than Ta 5d-Si 3p bond. Further an analysis of the different optical properties shows the compound to possess improved behavior compared to similar types of compounds.  相似文献   

2.
The lattice constants, elastic properties, electronic structure and thermodynamic properties of Al3Nb with DO22 structure have been investigated by the first-principles calculation. The calculated lattice constants were consistent with the experimental values, and the structural stability was also studied from the energetic point of view. The single-crystal elastic constants (Cij) as well as polycrystalline elastic parameters (bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio υ and anisotropy value A) were calculated, and brittleness of Al3Nb was discussed in detail. Besides, the electronic structure of tetragonal Al3Nb was studied, which indicates a mixture of metallic bond and covalent bond in Al3Nb and reveals the underlying mechanism of the stability and elastic properties of Al3Nb. Finally, the thermodynamic properties of Al3Nb were calculated and the physical properties such as heat capacity and Debye temperature were predicted within the quasi-harmonic approximation.  相似文献   

3.
We determine the structural, electronic, elastic and optical properties of fluoro-perovskite KZnF3 using the full potential linear augmented plane wave approach (FP-LAPW) based on the density functional theory (DFT). The exchange-correlation potential is treated by the local density approximation (LDA) and the generalized gradient approximation (GGA). The calculated structural parameters are in good agreement with the available data. We have obtained an indirect band gap. The effect of the pressure on the band gaps is investigated. We evaluate the elastic constants (Cij), elastic moduli and the Debye temperature. The imaginary and the real parts of the dielectric function ε(ω) and some optical constants are also calculated.  相似文献   

4.
Spin-polarized calculations were performed to investigate the structural, elastic, electronic, and magnetic properties of InCCo3 and InNCo3. The deviation of our calculated lattice parameters and equilibrium volume from experimental results is less than 0.8% and 2.5%, respectively. The obtained values of elasticity moduli Cij, bulk modulus B, and shear modulus G are discussed. From the calculated band structure and the total and partial densities of states, we have concluded that these compounds are electrical conductors; moreover, they are bonded by a mixture of covalent, ionic, and metallic bonds. Our calculations show that InCCo3 has nonmagnetic properties, while InNCo3 could have a magnetic behaviour, with an average magnetic moment about 0.54 μB/atom, which is mostly derived from d electrons of the cobalt atoms in the energy range from −5 eV up to the Fermi level.  相似文献   

5.
Detailed ab initio calculations of the structural, electronic, optical and elastic properties of two crystals - magnesite (MgCO3) and calcite (CaCO3) - are reported in the present paper. Both compounds are important natural minerals, playing an important role in the carbon dioxide cycling. The optimized crystal structures, band gaps, density of states diagrams, elastic constants, optical absorption spectra and refractive indexes dependence on the wavelength all have been calculated and compared, when available, with literature data. Both crystals are indirect band compounds, with calculated band gaps of 5.08 eV for MgCO3 and 5.023 eV for CaCO3. Both values are underestimated by approximately 1.0 eV with respect to the experimental data. Although both crystals have the same structure, substitution of Mg by Ca ions leads to certain differences, which manifest themselves in noticeable change in the electronic bands profiles and widths, shape of the calculated absorption spectra, and values of the elastic constants. Response of both crystals to the applied hydrostatic pressure was analyzed in the pressure range of phase stability, variations of the lattice parameters and characteristic interionic distances were considered. The obtained dependencies of lattice constants and calculated band gap on pressure can be used for prediction of properties of these two hosts at elevated pressures that occur in the Earth's mantle.  相似文献   

6.
The structural, elastic, electronic and optical (x=0) properties of doped Sn1−xBixO2 and Sn1−xTaxO2 (0≤x≤0.75) are studied using the first-principles pseudopotential plane-wave method within the local density approximation. The independent elastic constants Cij and other elastic parameters of these compounds have been calculated for the first time. The mechanical stability of the compounds with different doping concentrations has also been studied. The electronic band structure and density of states are calculated and the effect of doping on these properties is also analyzed. It is seen that the band gap of the undoped compound narrowed with dopant concentration, which disappeared for x=0.26 for Bi doping and 0.36 for Ta doping. The materials thus become conductive oxides through the change in the electronic properties of the compound for x≤0.75, which may be useful for potential application. The calculated optical properties, e.g. dielectric function, refractive index, absorption spectrum, loss-function, reflectivity and conductivity of the undoped SnO2 in two polarization directions are compared with both previous calculations and measurements.  相似文献   

7.
The optical and acoustic properties of tellurite glasses in the system TeO2/ZrO2/WO3 have been investigated. The refractive index at different wavelengths and the optical spectra of the glasses have been measured. From the refractive index and absorption edge studies for prepared glasses, the optical parameter viz; optical band gap (Eopt), Urbach energy, (ΔE), dispersion energy, Ed, and the average oscillator energy, E0, have been calculated. Sound velocities were measured by pulse echo technique. From these velocities and densities values, various elastic moduli were calculated. The variations in the refractive index, optical energy gap and elastic moduli with WO3 content have been discussed in terms of the glass structure. Quantitatively, we used the bond compression model for analyzing the room temperature elastic moduli data. By calculating the number of bonds per unit volume, the average stretching force constant, and the average ring size we can extract valuable information about the structure of the present glasses.  相似文献   

8.
Using the first-principles density-functional theory within the generalized gradient approximation (GGA), we have investigated the structural, elastic, mechanical, electronic, and optical properties and phase transition of CuInO2. Structural parameters including lattice constants and internal parameter, pressure effects and phase transition pressure were calculated. We have obtained the elastic coefficients, bulk modulus, shear modulus, Young's modulus and Poisson's ratio. We find that two phases of CuInO2 are indirect band gap semiconductors (F–Γ and H–Γ for 3R and 2H, respectively). Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function and optical conductivity have been obtained for radiations of up to 30 eV.  相似文献   

9.
We calculated the structural parameters, elastic, mechanical, electronic and optical properties of 3R- and 2H-CuGaO2 using the first-principles density-functional theory. The results show that the structural parameters of two phases are in good agreement with previous theoretical and experimental data. Two phases are mechanically stable, behave in ductile manner and have indirect band gap. The analyses of electronic structures and charge densities of two phases show mainly covalent nature in Cu-O bonds and coexistence of both ionic and covalent nature in Ga-O bonds. The optical properties are obtained and discussed, including the complex dielectric function, refractive index, extinction coefficient, optical reflectivity, absorption coefficient, energy-loss spectrum and complex conductivity function, which provide useful information for the future applications of CuGaO2.  相似文献   

10.
We preformed first-principle calculations for the structural, electronic, elastic and magnetic properties of Cu2GdIn, Ag2GdIn and Au2GdIn using the full-potential linearized augmented plane wave (FP-LAPW) scheme within the generalized gradient approximation by Wu and Cohen (GGA-WC), GGA+U, the local spin density approximation (LSDA) and LSDA+U. The lattice parameters, the bulk modulus and its pressure derivative and the elastic constants were determined. Also, we present the band structures and the densities of states. The electronic structures of the ferromagnetic configuration for Heusler compounds (X2GdIn) have a metallic character. The magnetic moments were mostly contributed by the rare-earth Gd 4f ion.  相似文献   

11.
Ab initio calculations of structural, electronic, elastic, and phonon properties of TiRu3 and TiOs3 compounds have been studied using the density functional theory (DFT) within the generalized gradient approximation (GGA). The basic structural properties such as lattice constants, bulk modulus and pressure derivative of bulk modulus of these compounds were studied and compared with the previous theoretical data. Electronic band structures and partial densities of states for TiRu3 and TiOs3 compounds were computed and analyzed. The electronic band calculations showed that the TiRu3 and TiOs3 compounds have metallic nature. Phonon spectra, their total and projected densities of states for these compounds were computed by using a linear-response method in the framework of the density functional perturbation theory. The specific heat capacities at a constant volume CV and Debye temperature of TiCr3 and TiOs3 compounds were also calculated and discussed.  相似文献   

12.
The elastic and electronic structure properties of YNi2B2C under pressure are investigated by performing the generalized gradient approximation (GGA) and local density approximation (LDA) correction scheme in the frame of density functional theory (DFT). The pressure dependences of the normalized lattice parameters a/a0 and c/c0, the ratio c/a, and the normalized primitive volume V/V0 of YNi2B2C are also obtained. The lattice constants and bulk modulus obtained are in agreement with the available experimental and other theoretical data. We have also studied the pressure dependences of elastic properties. It is found that, as pressure increases, the elastic constants C11, C33, C66, C12, and C13 increase, the variation of elastic constant C44 is not obvious. Moreover, our compressional and shear wave velocities VL=6.99 km/s and VS=3.67 km/s as well as the Debye temperature Θ=549.7 K at 0 GPa compare favorably with the available experimental data. The pressure dependences of band structures, energy gap and density of states are also investigated.  相似文献   

13.
In this paper, we study the structural, electronic and elastic properties of the ternary AgSbTe2, AgSbSe2, Pr3AlC, Ce3AlC, Ce3AlN, La3AlC and La3AlN compounds using the full-potential linearized augmented plane wave (FP-LAPW) scheme and the pseudopotential plane wave (PP-PW) scheme in the frame of generalized gradient approximation (GGA). Results are given for the lattice parameters, bulk modulus, and its pressure derivative. The calculated lattice parameters are in good agreement with experimental results. We have determined the full set of first-order elastic constants, shear modulus, Young's modulus and Poisson's ratio of these compounds. Also, we have presented the results of the band structure, densities of states, it is found that this compounds metallic behavior, and a negative gap Г→R for Pr3AlC. The analysis charge densities show that bonding is of covalent–ionic and ionic nature for AgSbSe2 and AgSbTe2 compounds.  相似文献   

14.
The structural, elastic, electronic, optical and thermal properties of the semiconductor perovskite CsPbCl3 were investigated using the pseudo-potential plane wave (PP-PW) scheme in the frame of generalized gradient approximation (GGA) and local density approximation (LDA). The computed lattice constant agrees reasonably with experimental and theoretical ones. The CsPbCl3 crystal behaves as ductile material. The valence bands are separated from the conduction bands by a direct band gap R-R. We distinguished hybridization between Pb-p states and Cl-p states in the valence bonding region. Under compression at P=30 GPa, this material will have a metallic character. The thermal effect on the lattice constant, bulk modulus, Debye temperature and heat capacity CV was predicted using the quasi-harmonic Debye model. To the author's knowledge, most of the studied properties are reported for the first time.  相似文献   

15.
We have investigated the elastic and thermodynamic properties for the perovskite type metavanadate SrVO3 and the multiferroic PbVO3, probably for the first time by the means of a Modified Rigid Ion Model (MRIM). We present the elastic constants (C11,C12,C44) and other elastic properties like Bulk modulus (B), Young′s modulus (E), shear modulus (G), Poisson′s ratio (σ) and wave velocity (υl, υs, υm). Besides we have reported the thermodynamic properties molecular force constant (f), Reststrahlen frequency (ν), cohesive energy (?), Debye temperature (θD) and Gruneisen parameter (γ). We have also computed the variation of heat capacity (CP) and there by volume thermal expansion coefficient (α) in a wide temperature range. We found that the computed properties reproduce well with the available data in literature. To our knowledge some of the properties are reported for the first time.  相似文献   

16.
The crystal structures, band structures, elastic constants, hardness, and optical properties of pyrite-type dinitrides (CN2, SiN2, and GeN2) are obtained from the density functional theory using the plane-wave pseudopotential (PWP) method within the local density and generalized gradient approximations. The formation enthalpies for AN2 (A=C, Si, and Ge) compounds suggest the three structures that are stable. The calculated band structures show the indirect gaps (ΓR) in CN2, SiN2, and GeN2. The intrinsic hardnesses of AN2 (A=C, Si, and Ge ) compounds are calculated. Our results show that the cubic CN2 and SiN2 are superhard materials. Furthermore, we studied the optical properties such as the complex dielectric function and the electron energy loss spectra.  相似文献   

17.
The first-principles calculations are performed to investigate the mechanical properties and electronic structure of TiC, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, TiC0.75N0.25 and TiN. Density functional theory and ultrasoft pseudopotentials are used in this study. From the formation energy, it is found that nitrogen can increase the stability of TiC. The calculated elastic constants and elastic moduli of TiC compare favorably with other theoretical and experimental values. Tungsten and nitrogen are observed to significantly increase the bulk, shear and Young's modulus of TiC. Through the analysis of B/G and Cauchy pressure, tungsten can significantly improve the ductility of TiC. The electronic structure of TiC, TiN, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, and TiC0.75N0.25 are used to describe nonmetal–metal and metal–metal bonds. Based on the Mulliken overlap population analysis, the hardness values of TiC, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, TiC0.75N0.25 and TiN are estimated.  相似文献   

18.
A comparative study of electronic structure and magnetic properties of SrCrO3 and SrMoO3 has been carried out using FPLAPW method with density-functional theory. The calculated results suggest that both compounds are nonmagnetic (NM) metal in cubic structures at room temperature, and they exhibit very similar band structure and electronic properties except more extend Mo 4d orbitals than Cr 3d electronic states. However, the electronic structure and magnetic properties exhibit remarkable differences between them in the low temperature phases. SrCrO3 is with a C-AFM ground state with magnetic moment of 1.18μB/Cr in the tetragonal structure, while SrMoO3 is with a NM ground state in the orthorhombic structure. It is assumed that the extend 4d orbitals may be the reason which results in NM solution at low temperature phase of SrMoO3.  相似文献   

19.
翟红村  李晓凤  杜军毅  姬广富 《中国物理 B》2012,21(5):57102-057102
The mechanical stability,elastic,and thermodynamic properties of the anti-perovskite superconductors MNNi 3(M=Zn,Mg,Al) are investigated by means of the first-principles calculations.The calculated structural parameters and elastic properties of MNNi 3 are in good agreement with the experimental and the other theoretical results.From the elastic constants under high pressure,we predict that ZnNNi 3,MgNNi 3,and AlNNi 3 are not stable at the pressures above 61.2 GPa,113.3 GPa,and 122.4 GPa,respectively.By employing the Debye model,the thermodynamic properties,such as the heat capacity and the thermal expansion coefficient,under pressures and at finite temperatures are also obtained successfully.  相似文献   

20.
The elastic, phonon and thermodynamic properties of the divalent alkaline-earth hexaboride SrB6 are investigated by using plane-wave pseudopotential density functional theory method. The calculated structure parameters and bulk modulus are well consistent with the available experiment and theoretical data. The pressure dependences of elastic constants Cij, bulk modulus B0, shear modulus G, Young's modulus E and Poisson's ratio σ are also presented. With these elastic parameters, we investigate the mechanical stability and compressibility of SrB6. For the thermodynamic properties, both phonon and quasi-harmonic Debye model methods are adopted. Through the comparison with experimental and other theoretical results, we found the method of quasi-harmonic Debye model is a little better. Moreover, the phonon dispersion relations are also obtained. It is found that there are two LO/TO splitting around 5 THz and 26 THz, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号