首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
To enhance sample signals and improve homogeneity in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) analysis, a simple, rapid, and efficient sample preparation method was developed in this study. Polydimethylsiloxane (PDMS) was coated on a stainless steel MALDI plate, forming a transparent, hydrophobic surface that enhanced sample signals without producing observable background signals. Compared to the use of an unmodified commercial metal MALDI plate, peptide signals were enhanced by ~7.1–11.0-fold due to the reduced sample spot area of the PDMS-coated plate, and showed improved peptide mass fingerprinting (PMF) and MS/MS peptide sequencing results. In the analysis of phosphopeptides and carbohydrates with a 2,5-dihydroxybenzoic acid (DHB) matrix, the PDMS-coated plate showed improved sample homogeneity and signal enhancements of ~5.2–8.2-fold and ~2.8–3.2-fold, respectively. Improved sensitivity in the observation of more unique fragment ions by MS/MS analysis, to successfully distinguish isomeric carbohydrates, was also illustrated. In protein analysis with a sinapinic acid (SA) matrix, a ~3.4-fold signal enhancement was observed. The PDMS film coating was easily removed and refabricated to avoid sample carryover, and was applicable to diverse commercial MALDI plates. The PDMS-coated approach is a simple, practical, and attractive method for enhancing analyte signals and homogeneity.  相似文献   

2.
Here, N,N′-bis(4-hydroxylsalicylidene)-p-phenylenediamine (BSPD-OH), N,N′-bis(4-methoxylsalicylidene)-p-phenylenediamine (BSPD-OMe) and N,N′-bis(salicylidene)-p-phenylenediamine (BSPD), which belong to the same category of aggregation-induced emission (AIE) compounds based on Schiff base reactions, were synthesized and applied as new matrices in the analysis of small molecules by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This type of AIE compounds can be good MALDI matrices. Conventional organic matrices often produce large amounts of matrix ions, hindering the analysis of low molecular weight (LMW) compounds. However, these AIE compounds generate few matrix ions and less background interference because their presence as aggregates decreases the generation of matrix interference. The sensitivity of the AIE matrix is high because the aggregates can improve the absorption of the applied laser emissions. We can regulate the ionization efficiency of the AIE matrix by changing its aggregation state. During this study, BSPD-OH exhibited better ionization efficiency than the other two AIE matrices because it has more phenolic hydroxyl groups. BSPD-OH was successfully applied to the analysis of various LMW compounds including amino acids, organic amine compounds, isoquinoline compounds and fluoroquinolones compounds. This material also can be employed during the qualitative and quantitative analysis of LMW metabolites in human urine without requiring complicated separation processes.  相似文献   

3.
The SO4-oxidation of cyclic 1,N2-propano-2′-deoxyguanosine, chemo- and regioselectively produced in the reaction of 2′-deoxyguanosine with excessive acetaldehyde or crotonaldehyde, resulted in the smooth formation of (4-hydroxy-5-hydroxymethyltetrahydrofuran-2-ylimino)-(4-hydroxy-6-methyltetrahydropyrimidin-2-ylideneamino)acetic acid, 3-(4-hydroxy-5-hydroxymethyltetrahydrofuran-2-yl)-6-methyl-3H-1,3,4,5,8a-pentaazacyclopenta[b]naphthalen-9-one, and 2′-deoxyguanosine even under neutral conditions. The formation of the guanine-ring opened product during the reaction is very interesting and appears to closely relate to the mechanisms for the point-mutations of DNA by these mutagenic and carcinogenic aldehydes.  相似文献   

4.
We report new approaches using alkali-hydroxide-doped matrices to facilitate structural characterization of neutral underivatized oligosaccharides by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) MS. The approaches involved pretreatment of the analytes with NaOH or LiOH in aqueous solution, followed by mixing them with MALDI matrices prior to MS analysis. It was found that for open-ended neutral underivatized oligosaccharides partial alkaline degradation occurred upon laser desorption and ionization of the hydroxide-pretreated analytes in 2,5-dihydroxybenzoic acid (DHBA). The effect intensified when nonacidic compounds such as 2,4,6-trihydroxyacetophenone (THAP) and 5-amino-2-mercapto-1,3,4-thiadiazole (AMT) were used as matrix. The degradation allowed facile identification of the reducing end residue of the analyte and facilitated its structural characterization by postsource decay TOF-MS. Applying the same technique using matrices composed of LiOH and THAP or AMT led to the production of singly as well as multiple lithiated ions of oligosaccharides containing hexoses with free 3-OH groups. Extensive lithiation through multiple hydrogen-lithium exchanges up to 6 Li atoms was observed for maltoheptaose, beta-cyclodextrin, and dextran 1500. Such a 'lithium tagging' technique makes it possible to differentiate positional isomers of milk-neutral oligosaccharides, lacto-N-difucohexaose I and II (LNDFH-I and LNDFH-II), without the need of chemical derivatization or tandem MS analysis.  相似文献   

5.
Rapid, inexpensive, and convenient methods for quantifying elemental sulfur (S0) with low or sub-μg g−1 limits of detection would be useful for a range of applications where S0 can act as a precursor for noxious off-aromas, e.g., S0 in pesticide residues on winegrapes or as a contaminant in drywall. However, existing quantification methods rely on toxic reagents, expensive and cumbersome equipment, or demonstrate poor selectivity. We have developed and optimized an inexpensive, rapid method (∼15 min per sample) for quantifying S0 in complex matrices. Following dispersion of the sample in PEG-400 and buffering, S0 is quantitatively reduced to H2S in situ by dithiothreitol and simultaneously quantified by commercially available colorimetric H2S detection tubes. By employing multiple tubes, the method demonstrated linearity from 0.03 to 100 μg S0 g−1 for a 5 g sample (R2 = 0.994, mean CV = 6.4%), and the methodological detection limit was 0.01 μg S0 g−1. Interferences from sulfite or sulfate were not observed. Mean recovery of an S0 containing sulfur fungicide in grape macerate was 84.7% with a mean CV of 10.4%. Mean recovery of S0 in a colloidal sulfur preparation from a drywall matrix was 106.6% with a mean CV of 6.9%. Comparable methodological detection limits, sensitivity, and recoveries were achieved in grape juice, grape macerate and with 1 g drywall samples, indicating that the methodology should be robust across a range of complex matrices.  相似文献   

6.
This work demonstrated a simple platform for rapid and effective surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS) measurements based on the layer structure of reduced graphene oxide (rGO) and gold nanoparticles. A multi-layer thin film was fabricated by alternate layer-by-layer depositions of rGO and gold nanoparticles (LBL rGO/AuNP). The flat and clean two-dimensional film was served as the sample plate and also functioned as the matrix in SALDI-TOF MS. By simply one-step deposition of analytes onto the LBL rGO/AuNP sample plate, the MS measurements of various homogeneous samples were ready to execute. The optimization of MS signal was reached by the variation of the layer numbers of rGO and gold nanoparticles. Also, the small molecules including amino acids, carbohydrates and peptides were successfully analyzed in SALDI-TOF MS using the LBL rGO/AuNP sample plate. The results showed that the signal intensity, S N−1 ratio and reproducibility of SALDI-TOF spectra have been significantly improved in comparison to the uses of gold nanoparticles or α-cyano-4-hydroxy-cinnamic acid (CHCA) as the assisted matrixes. Taking the advantages of the unique properties of rGO and gold nanoparticles, the ready-to-use MS sample plate, which could absorb and dissipate laser energy to analytes quite efficiently and homogeneously, has shown great commercial potentials for MS applications.  相似文献   

7.
A novel fluorescence chemical sensor for the highly sensitive and selective determination of Pb2+ ions in aqueous solutions is described. The preliminary potentiometric and spectrofluorimetric complexation studies in solution revealed that the lipophilic ligand 5,8-bis((5′-chloro-8′-hydroxy-7′-quinolinyl)methyl)-2,11-dithia-5,8-diaza-2,6-pyridinophane (L2) forms a highly stable and selective [PbL2]2+ and [Pb(L2)2]2+ complexes which results in a strong fluorescence quenching of the ligand. Thus, a novel fluorescence Pb2+ sensing system was prepared by incorporating L2 as a neutral lead-selective fluoroionophore in the plasticized PVC membrane containing tetrakis(p-chlorophenyl) borate as a liphophilic anionic additive. The response of the sensor is based on the strong selective fluorescence quenching of L2 by Pb2+ ions. At pH 5.5, the proposed sensor displays a calibration curve over a wide concentration range of 3.0 × 10−7 to 2.5 × 10−2 M with a relatively fast response time of less than 5 min. In addition to high stability, reversibility and reproducibility, the sensor shows a unique selectivity towards Pb2+ ion with respect to common coexisting cations. The proposed fluorescence optode was successfully applied to the determination of lead in plastic toys and tap water samples.  相似文献   

8.
A new method for the analysis of phenoxy acid herbicide residues in rice, based on the use of liquid extraction/partition and dispersive solid phase extraction (dispersive-SPE) followed by ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS), is reported. 5% (v/v) formic acid in acetonitrile as the extraction solvent and inclusion of citrate buffer helped partitioning of all the analytes into the acetonitrile phase. The extract was then cleaned up by dispersive-SPE using C18 and alumina neutral as selective sorbents. Further optimization of sample preparation and determination allowed recoveries of between 45 and 104% for all 13 phenoxy acid herbicides with RSD values lower than 13.3% at 5.0 μg kg−1 concentration level. Limit of detections (LODs) of 0.5 μg kg−1 or below were attained for all 13 phenoxy acids. Quantitative analysis was done in the multiple-reaction monitoring (MRM) mode using two combinations of selected precursor ion and product ion transition for each compound. This developed method produced relatively higher recoveries of the acid herbicides with a smaller range of variation and less susceptibility to matrix effects, than the original QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method.  相似文献   

9.
A new and sensitive electrochemical DNA hybridization detection assay, using tris(2,2′-bipyridyl)cobalt(III) [Co(bpy)33+]-doped silica nanoparticles as the oligonucleotide (ODN) labeling tag, and based on voltammetric detection of Co(bpy)33+ inside silica nanoparticles, is described. Electro-active Co(bpy)33+ is not possible for directly linking with DNA, it is doped into the silica nanoparticles in the process of nanoparticles synthesis for DNA labeling with trimethoxysilylpropydiethylenetriamine (DETA) and glutaraldehyde as linking agents. The Co(bpy)33+ labeled DNA probe is used to hybridize with target DNA immobilized on the surface of glassy carbon electrode. Only the complementary sequence DNA (cDNA) could form a double-stranded DNA (dsDNA) with the DNA probe labeled with Co(bpy)33+ and give an obvious electrochemical response. A three-base mismatch sequence and non-complementary sequence had negligible response. Due to the large number of Co(bpy)33+ molecules inside silica nanoparticles linked to oligonucleotide DNA probe, the assay showed a high sensitivity. It allows the detection at levels as low as 2.0×10−10 mol l−1 of the target oligonucleotides.  相似文献   

10.
Su AK  Lin CH 《Talanta》2006,68(3):673-678
The application of a multi-frequency laser source for the use in matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) is described. An elliptically polarized beam of a Nd:YAG laser emitting at 355 nm (200 mJ) is focused into a Raman shifter, filled with high pressure hydrogen. As a result, numerous Raman lasers (including vibrational and rotational Raman emissions for hydrogen; 4155 and 587 cm−1 shifts, respectively) were generated with a total power of ∼100 mJ. Using this multi-frequency laser as an ionization source, methionine enkephalin (MW 573.7), angiotensin I (MW 1296.5) and oxidized insulin chain B (MW 3495.9) were examined, as model compounds using α-cyano-4-hydroxycinnamic acid (CHCA), sinapinic acid (SA) and activated charcoal as the matrix, respectively. As a result, the S/N ratios were improved when the multi-frequency laser was used, compared to the single light source of the Nd:YAG laser (355 nm), irrespective of the type of matrix used. This is because the multi-frequency laser provides multi-line for absorption, where the traditional N2 laser only provides single wavelength (at 337 nm) for absorption.  相似文献   

11.
Copolymers with various contents of 4-methacryloyloxyphenyl-3′,4′-dimethoxystyryl ketone (MPDSK) and methyl methacrylate (MMA) were prepared in methyl ethyl ketone solution using benzoyl peroxide as a free radical initiator at 70 °C. Characterization of the resulting polymers was done by UV, FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The copolymer compositions were determined by 1H NMR analysis. The monomer reactivity ratios were calculated using linearisation methods such as Finemann-Ross (r1 = 0.4283 and r2 = 0.3050), Kelen-Tudos (r1 = 0.4264 and r2 = 0.2606), and extended Kelen-Tudos (r1 = 0.4022 and r2 = 0.2704) methods as well as by a non-linear error-in-variables model (EVM) method using the computer program RREVM (r1 = 0.4066 and r2 = 0.2802). The molecular weights ( and ) and the polydispersity index of the copolymers were determined by gel permeation chromatography. The thermal stability of the copolymers increases with increase in concentration of MPDSK. Glass transition temperatures were determined by differential scanning calorimeter under nitrogen atmosphere. The photoreactivity of the copolymers having pendant chalcone moieties was studied in chloroform solution.  相似文献   

12.
Cinnamic acid derivatives, particularly α‐cyano‐4‐hydroxycinnamic acid (E‐α‐cyano‐4‐hydroxycinnamic acid or (E)‐2‐cyano‐3‐(4‐hydroxyphenyl)prop‐2‐enoate; CHCA), have been extensively used especially for protein and peptide analysis. Together with the introduction of ionic liquid MALDI matrix (ILM) started the study of applications of IL prepared with CHCA and a counter organic base (ie, aliphatic amines) in which CHCA moiety is the chromophore responsible of UV‐laser absorption. Despite the extensive studies of norharmane (9H‐pyrido[3,4‐b]indole; nHo) applications as matrix and its peculiar basic properties in the ground and electronic excited state, nHo containing ILM was never tested in MALDI‐MS experiments. This pyrido‐indole compound was introduced as MALDI matrix 22 years ago for different applications including low molecular weight (LMW) carbohydrates (neutral, acidic, and basic carbohydrates). These facts encouraged us to use it as a base, for the first time, for ILM preparation. As a rational design of new IL MALDI matrices, E‐α‐cyanocinnamic acid.nHo and E‐cinnamic acid.nHo were prepared and their properties as matrices studied. Their performance was compared with that of (a) the corresponding IL prepared with butylamine as basic component, (b) the corresponding crystalline E‐α‐cyanocinnamic and E‐cinnamic acid, and (c) the classical crystalline matrices (2,5‐dihydroxybenzoic acid, DHB; nHo) used in the analysis of neutral/sulfated carbohydrates. The IL DHB.nHo was tested, too. Herein, we demonstrate the outstanding performance for the IL CHCA.nHo for LMW carbohydrate in positive and negative ion mode (linear and reflectron modes). Sulfated oligosaccharides were detected in negative ion mode, and although the dissociation of sulfate groups was not completely suppressed the relative intensity (RI) of [M ? Na]? peak was quite high. Additionally, to better understand the quite different performance of each IL tested as matrix, the physical and morphological properties in solid state were studied (optical image; MS image).  相似文献   

13.
A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA‐LDI‐MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI‐MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI‐MS approach has promising application to the analysis of carbohydrates in complex biological samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
We developed a potentiometric aflatoxin M1-immunosensor which utilizes 3-(4-hydroxyphenyl)propionic acid (p-HPPA) as electron donating compound for horseradish peroxidase (HRP; EC 1.11.1.7). The assay system consists of a polypyrrole-surface-working electrode coated with a polyclonal anti-M1 antibody (pAb-AFM1), a Ag/AgCl reference electrode and a HRP-aflatoxin B1 conjugate (HRP-AFB1 conjugate).To optimize the potentiometric measuring system p-HPPA as well as related compounds serving as electron donating compounds were compared. Also the influence of different buffer systems, varying pH and substrate concentrations on signal intensity was investigated. Our results suggest that reaction conditions that favor the formation of Pummerer's type ketones lead to an increase in signal intensity rather than formation of fluorescent dye. Comparison with commercial ready-to-use HRP electron donating compounds such as 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), o-phenylenediamine (OPD) or 3,3′,5,5′-tetramethylbenzidine (TMB) showed that only 34%, 77% and 49% of the signal intensity of p-HPPA were reached, respectively.The optimized assay had a detection limit of 40 pg mL−1 and allowed detection of 500 pg mL−1 (FDA action limit) aflatoxin M1 (AFM1) in pasteurized milk and UHT-milk containing 0.3-3.8% fat within 10 min without any sample treatment. The working range was between 250 and 2000 pg mL−1 AFM1.  相似文献   

15.
An electrochemiluminescence (ECL) sensor based on Ru(bpy)32+-graphene-Nafion composite film was developed. The graphene sheet was produced by chemical conversion of graphite, and was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Raman spectroscopy. The introduction of conductive graphene into Nafion not only greatly facilitates the electron transfer of Ru(bpy)32+, but also dramatically improves the long-term stability of the sensor by inhibiting the migration of Ru(bpy)32+ into the electrochemically inactive hydrophobic region of Nafion. The ECL sensor gives a good linear range over 1 × 10−7 to 1 × 10−4 M with a detection limit of 50 nM towards the determination of tripropylamine (TPA), comparable to that obtained by Nafion-CNT. The ECL sensor keeps over 80% and 85% activity towards 0.1 mM TPA after being stored in air and in 0.1 M pH 7.5 phosphate buffer solution (PBS) for a month, respectively. The long-term stability of the modified electrode is better than electrodes modified with Nafion, Nafion-silica, Nafion-titania, or sol-gel films containing Ru(bpy)32+. Furthermore, the ECL sensor was successfully applied to the selective and sensitive determination of oxalate in urine samples.  相似文献   

16.
A matrix-free, high sensitivity, nanostructured silicon surface assisted laser desorption/ionization mass spectrometry (LDI-MS) method fabricated by metal-assisted etching was investigated. Effects of key process parameters, such as etching time, substrate resistance and etchant composition, on the nanostructured silicon formation and its LDI-MS efficiency were studied. The results show that the nanostructured silicon pore depth and size increase with etching time, while MS ion intensity increases with etching time to 300 s then decreases until 600 s for both low resistance (0.001–0.02 Ω cm) and high resistance (1–100 Ω cm) silicon substrates. The nanostructured silicon surface morphologies were found to directly affect the LDI-MS signal ion intensity. By characterizing the nanostructured silicon surface roughness using atomic force microscopy (AFM) and sample absorption efficiency using fluorescence microscopy, it was further demonstrated that the nanostructured silicon surface roughness was highly correlated to the LDI-MS performance.  相似文献   

17.
Wang CH  Li J  Yao SJ  Guo YL  Xia XH 《Analytica chimica acta》2007,604(2):158-164
In matrix-assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry (FTMS) analyses of small oligosaccharides and amino acids, high sensitivities for oligosaccharides (10 fmol) were obtained by introducing oxidized carbon nanotubes (CNTs) with short and open-end structure as valuable matrix. The CNTs were deposited in porous anodic alumina (PAA) templates by chemical vapor deposition. Transmission electron microscopy (TEM) images show that those CNTs include low levels of amorphous carbon. Thus, the background interference signals generally caused by amorphous carbon powder in CNTs can be reduced effectively. Experiments also confirmed that the FTMS signal intensity of CNTs prepared in PAA template is much lower than that of commercial multi-wall carbon nanotubes (MCNTs). Moreover, the purified process for CNTs with mixed acid (H2SO4 and HNO3) also contributed to the minimization of background. Intense signals corresponding to alkali cation adduct of neutral carbohydrates and amino acids have been acquired. In addition, reliable quantitative analyses for urine and corn root were also achieved successfully. The present work will open a new way to the application of oxidized CNTs as an effective matrix in MALDI MS research.  相似文献   

18.
A robust optical composite thin film dissolved oxygen sensor was fabricated by ionically trapping the dye ruthenium(II) tris(4,7-diphenyl-1,10-phenanthroline) dichloride in a blended fluoropolymer matrix consisting of Nafion® and Aflas®. Strong phosphorescence, which was strongly quenched by dissolved oxygen (DO), was observed when the sensor was immersed in water. The sensor was robust, optically transparent, with good mechanical properties. Fast response, of a few seconds, coupled with sensitivity of about 0.1 mg L−1 (DO) over the range 0-30 mg L−1 and resistance to leaching, were also exhibited by this system. The Stern-Volmer (SV) plot exhibited slight downward turning at all oxygen concentrations. A linear plot was obtained when the SV equation was modified to account for the varying sensitivity of dye molecules in the matrix to the quencher. Good long term stability was observed.  相似文献   

19.
X-ray-excited luminescence (XEL), thermoluminescence (TL), photoluminescence under excitation of UV light and X-ray photoelectron spectroscopy (XPS) measurements were conducted on PbWO4 (PWO) single crystals doped with La3+ at a series of concentration levels. With the increase of doping levels, the intensity of PWO in the XEL or the excitation-emission spectra was found to decrease accordingly, especially in the case of heavy doping. TL peaks in the range from room temperature to 200°C disappeared after the doping with La3+. A splitting of the La3d XPS peak in the heavy La3+-doped samples was observed and proposed to be responsible for that. At a high doping level, La3+ would occupy W-sites besides Pb-sites and thus induce a self-compensation via pairs [(LaW3+)″′−(LaPb3+)]−(VO)•• or clusters [3(LaPb3+)−(LaW3+)″′], where nonradiative recombination was previously reported to occur. The mechanism of the influence on luminescence was also discussed in this paper.  相似文献   

20.
A novel kinetic chemiluminescent method using the stopped-flow mixing technique has been investigated for the rapid and sensitive determination of citrate and pyruvate. The method is based on a tris(2,2′-bipyridiyl)ruthenium(III) (Ru(bpy)33+) chemiluminescence (CL) reaction. Ru(bpy)33+ was generated in the mixing chamber by oxidising tris(2,2′-bipyridyl)ruthenium(II) with cerium(IV). After selecting the best operating parameters, calibration graphs were obtained over the concentration ranges 0.38-38 μg ml−1 and 8.7-1300 ng ml−1 for citrate and pyruvate, respectively. The limits of detection were 0.1 μg ml−1 for citrate and 0.3 ng ml−1 for pyruvate. Based on the differential rate of the chemiluminescent reaction corresponding to citrate and pyruvate, a very simple kinetic procedure was developed for the simultaneous determination of both compounds. Mixtures of citrate and pyruvate in ratios between 15:1 and 1.5:1 were satisfactorily resolved. The proposed method was successfully applied to the determination of citrate in pharmaceutical formulations, pyruvate in animal blood serum and both compounds in human urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号