首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
High spectral tunability and quantum yield are the striking features of rhodopsin photochemistry. They rely on a strong and complex interaction of their chromophore, the protonated Schiff base of retinal, with its protein environment. In this article, we review the progress in the computational modeling of these systems, focusing on the optical properties and the excited state dynamics. While the earlier success of atomistic theoretical models was based on the breakthrough in X-ray crystallography and combined quantum mechanical molecular mechanical (QM/MM) methodology, recent advances point out the importance of high-level QM methods and the incorporation of effects that are neglected in conventional QM/MM or ONIOM schemes, like polarization and charge transfer.  相似文献   

3.
Recently, based on the principle of electronic chemical potential equalization and the principle of charge conservation, we proposed a flexible-boundary scheme that allows both partial charge transfer and self-consistent polarization between the quantum mechanical (QM) and molecular mechanical (MM) subsystems in QM/MM calculations; the scheme was applied to study the atomic charges in selected ion–solvent complexes. In the present contribution, we further extend the flexible-boundary treatment to handle the QM/MM boundary passing through covalent bonds. We find that the flexible-boundary redistributed charge and dipole schemes yield reasonable agreement with full-QM calculations for a number of molecular ions and amino acids with charged side chains. Using the full-QM results as reference, the mean unsigned deviations are computed to be 0.06 e for atomic partial charges of the QM atoms, 0.11 e for the amounts of charge transfer between the QM and MM subsystems, and 0.016 Å for the lengths of the covalent bonds that directly connect the QM and MM subsystems. The results indicate the importance of accounting for partial charge transfer across the QM/MM boundary when the QM subsystems are charged.  相似文献   

4.
5.
Burton NA  Harrison MJ  Hart JC  Hillier IH  Sheppard DW 《Faraday discussions》1998,(110):463-75; discussion 477-520
The use of hybrid methods, involving both quantum mechanics and molecular mechanics, to model the mechanism of enzyme-catalysed reactions, is discussed. Two alternative approaches to treating the electrostatic interactions between the quantum mechanical and molecular mechanical regions are studied, involving either the inclusion of this term in the electronic Hamiltonian (QM/MM), or evaluating it purely classically (MO + MM). In the latter scheme, possible problems of using force fields that are standard for macromolecular modelling are identified. The use of QM/MM schemes to investigate the mechanism of the enzymes thymidine phosphorylase (ThdPase) and protein tyrosine phosphatase (PTP) is described. For both systems, transition states have been identified using a PM3 Hamiltonian. For ThdPase, concerted motion of the enzyme during the course of the reaction is suggested and, for PTP, a two-step dephosphorylation reaction is indicated, both with quite low barriers.  相似文献   

6.
7.
8.
Non-adiabatic on-the-fly molecular dynamics (NA-O-MD) simulations require the electronic wavefunction, energy gradients, and derivative coupling vectors in every timestep. Thus, they are commonly restricted to the excited state dynamics of molecules with up to ≈20 atoms. We discuss an approximation that combines the ONIOM(QM:QM) method with NA-O-MD simulations to allow calculations for larger molecules. As a proof of principle we present the excited state dynamics of a (6-4)-lesion containing dinucleotide (63 atoms), and especially the importance to include the confinement effects of the DNA backbone. The method is able to include electron correlation on a high level of theory and offers an attractive alternative to QM:MM approaches for moderate sized systems with unknown force fields.  相似文献   

9.
The optical and IR-spectroscopic properties of the protonated Schiff base of retinal are highly sensitive to the electrostatic environment. This feature makes retinal a useful probe to study structural differences and changes in rhodopsins. It also raises an interest to theoretically predict the spectroscopic response to mutation and structural evolution. Computational models appropriate for this purpose usually combine sophisticated quantum mechanical (QM) methods with molecular mechanics (MM) force fields. In an effort to test and improve the accuracy of these QM/MM models, we consider in this article the effects of polarization and inter-residual charge transfer within the binding pocket of bacteriorhodopsin (bR) and pharaonis sensory rhodopsin II (psRII, also called pharaonis phoborhodopsin, ppR) on the excitation energy using an ab initio QM/QM/MM approach. The results will serve as reference for assessing empirical polarization models in a consecutive article.  相似文献   

10.
A combined quantum mechanics/molecular mechanics (QM/MM) method is described, where the polarization between the solvent and solute is accounted for using a self-consistent scheme linear in the solvent polarization. The QM/MM method is implemented for calculation of energies and molecular response properties including the calculation of linear and quadratic response functions using the density-functional theory (DFT) and the Hartree-Fock (HF) theory. Sample calculations presented for ground-state energies, first-order ground-state properties, excitation energies, first-order excited state properties, polarizabilities, first-hyperpolarizabilities, and two-photon absorptions strengths of formaldehyde suggests that DFT may in some cases be a sufficiently reliable alternative to high-level theory, such as coupled-cluster (CC) theory, in modeling solvent shifts, whereas results obtained with the HF wave function deviate significantly from the CC results. Calculations carried out on water gives results that also are comparable with CC calculations in accuracy for ground-state and first-order properties. However, to obtain such accuracy an exchange-correlation functional capable of describing the diffuse Rydberg states must be chosen.  相似文献   

11.
QM/MM methods have been developed as a computationally feasible solution to QM simulation of chemical processes, such as enzyme-catalyzed reactions, within a more approximate MM representation of the condensed-phase environment. However, there has been no independent method for checking the quality of this representation, especially for highly nonisotropic protein environments such as those surrounding enzyme active sites. Hence, the validity of QM/MM methods is largely untested. Here we use the possibility of performing all-QM calculations at the semiempirical PM3 level with a linear-scaling method (MOZYME) to assess the performance of a QM/MM method (PM3/AMBER94 force field). Using two model pathways for the hydride-ion transfer reaction of the enzyme dihydrofolate reductase studied previously (Titmuss et al., Chem Phys Lett 2000, 320, 169-176), we have analyzed the reaction energy contributions (QM, QM/MM, and MM) from the QM/MM results and compared them with analogous-region components calculated via an energy partitioning scheme implemented into MOZYME. This analysis further divided the MOZYME components into Coulomb, resonance and exchange energy terms. For the model in which the MM coordinates are kept fixed during the reaction, we find that the MOZYME and QM/MM total energy profiles agree very well, but that there are significant differences in the energy components. Most significantly there is a large change (approximately 16 kcal/mol) in the MOZYME MM component due to polarization of the MM region surrounding the active site, and which arises mostly from MM atoms close to (<10 A) the active-site QM region, which is not modelled explicitly by our QM/MM method. However, for the model where the MM coordinates are allowed to vary during the reaction, we find large differences in the MOZYME and QM/MM total energy profiles, with a discrepancy of 52 kcal/mol between the relative reaction (product-reactant) energies. This is largely due to a difference in the MM energies of 58 kcal/mol, of which we can attribute approximately 40 kcal/mol to geometry effects in the MM region and the remainder, as before, to MM region polarization. Contrary to the fixed-geometry model, there is no correlation of the MM energy changes with distance from the QM region, nor are they contributed by only a few residues. Overall, the results suggest that merely extending the size of the QM region in the QM/MM calculation is not a universal solution to the MOZYME- and QM/MM-method differences. They also suggest that attaching physical significance to MOZYME Coulomb, resonance and exchange components is problematic. Although we conclude that it would be possible to reparameterize the QM/MM force field to reproduce MOZYME energies, a better way to account for both the effects of the protein environment and known deficiencies in semiempirical methods would be to parameterize the force field based on data from DFT or ab initio QM linear-scaling calculations. Such a force field could be used efficiently in MD simulations to calculate free energies.  相似文献   

12.
An assessment of a number of quantum mechanical/molecular mechanical (QM/MM) combinations was performed for weak intermolecular interactions across noncovalent QM/MM 'boundaries'. The popular S22 data set, comprising of a number of weak hydrogen-bonded, dispersion-bound and complexes with mixed interactions was used for the assessment. A range of QM methods was combined with a number of popular MM force fields. The single-point interaction energies, at reference geometries, are presented as deviations to accurate CCSD(T)/CBS reference values. This investigation employed both additive and subtractive QM/MM schemes. The density functional has only a negligible effect; the choice of basis set was also negligible in terms of accuracy. The importance of selecting the most appropriate MM force field for accurately describing interactions at the noncovalent 'boundary' region has a dramatic effect on the accuracy.  相似文献   

13.
Characterization of the electronically polarized environment and the nuclear relaxation that accompanies charge carriers is fundamental to charge transport in crystalline, polycrystalline, and amorphous organic solids. To study the polarization effects of localized charged carriers, we use quantum/classical QM/MM approaches with charge redistribution and polarizable force field schemes and apply them to crystals of naphthalene through pentacene. We describe the results of a comprehensive investigation of the electronic polarization energies in molecular crystal structures of these oligoacenes and discuss as well the evolution of the nuclear relaxation energies calculated for model oligoacene systems.  相似文献   

14.
This article reports a combined quantum mechanics/molecular mechanics (QM/MM) investigation on the acid hydrolysis of cellulose in water using two different models, cellobiose and a 40‐unit cellulose chain. The explicitly treated solvent molecules strongly influence the conformations, intramolecular hydrogen bonds, and exoanomeric effects in these models. As these features are largely responsible for the barrier to cellulose hydrolysis, the present QM/MM results for the pathways and reaction intermediates in water are expected to be more realistic than those from a former density functional theory (DFT) study with implicit solvent (CPCM). However, in a qualitative sense, there is reasonable agreement between the DFT/CPCM and QM/MM predictions for the reaction mechanism. Differences arise mainly from specific solute–solvent hydrogen bonds that are only captured by QM/MM and not by DFT/CPCM. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
A combination of the polarizable continuum model (PCM) and the hybrid quantum mechanics/molecular mechanics (QM/MM) methodology, PCM-MM/QM, is used to include the solute electronic polarization and then study the solvent effects on the low-lying n→π(?) excitation energy and the (15)N nuclear magnetic shielding of pyrazine and pyridazine in aqueous environment. The results obtained with PCM-MM/QM are compared with two other procedures, i.e., the conventional PCM and the iterative and sequential QM/MM (I-QM/MM). The QM calculations are made using density functional theory in the three procedures. For the excitation energies, the time-dependent B3LYP/6-311+G(d) model is used. For the magnetic shielding, the B3LYP/aug-pcS2(N)/pcS2(C,O,H) is used with the gauge-including atomic orbitals. In both cases, i.e., PCM-MM/QM and I-QM/MM, that use a discrete model of the solvent, the solute is surrounded by a first shell of explicit water molecules embedded by an electrostatic field of point charges for the outer shells. The best results are obtained including 28 explicit water molecules for the spectral calculations and 9 explicit water molecules for the magnetic shielding. Using the PCM-MM/QM methodology the results for the n→π(?) excitation energies of pyridazine and pyrazine are 32,070 ± 80 cm(-1) and 32,675 ± 60 cm(-1), respectively, in good agreement with the corresponding I-MM/QM results of 32,540 ± 80 cm(-1) and 32,710 ± 60 cm(-1) and the experimental results of 33,450-33,580 cm(-1) and 32,700-33,300 cm(-1). For the (15)N magnetic shielding, the corresponding numbers for the gas-water shifts obtained with PCM-MM/QM are 47.4 ± 1.3 ppm for pyridazine and 19.7 ± 1.1 ppm for pyrazine, compared with the I-QM/MM values of 53.4?±?1.3 ppm and 19.5 ± 1.2 ppm and the experimental results of 42-54 ppm and 17-22 ppm, respectively. The agreement between the two procedures is found to be very good and both are in agreement with the experimental values. PCM-MM/QM approach gives a good solute polarization and could be considered in obtaining reliable results within the expected QM/MM accuracy. With this electronic polarization, the solvent effects on the electronic absorption spectra and the (15)N magnetic shielding of the diazines in water are well described by using only an electrostatic approximation. Finally, it is remarked that the experimental and theoretical results suggest that the (15)N nuclear magnetic shielding of any diazine has a clear dependence with the solvent polarity but not directly with the solute-solvent hydrogen bonds.  相似文献   

16.
17.
18.
Quantum mechanical/molecular mechanical (QM/MM) free energy calculation presents a significant challenge due to an excessive number of QM calculations. A useful approach for reducing the computational cost is that based on the mean field approximation to the QM subsystem. Here, we describe such a mean-field QM/MM theory for electronically polarizable systems by starting from the Hartree product ansatz for the total system and invoking a variational principle of free energy. The MM part is then recast to a classical polarizable model by introducing the charge response kernel. Numerical test shows that the potential of mean force (PMF) thus obtained agrees quantitatively with that obtained from a direct QM/MM calculation, indicating the utility of self-consistent mean-field approximation. Next, we apply the obtained method to prototypical reactions in several qualitatively different solvents and make a systematic comparison of polarization effects. The results show that in aqueous solution the PMF does not depend very much on the water models employed, while in nonaqueous solutions the PMF is significantly affected by explicit polarization. For example, the free energy barrier for a phosphoryl dissociation reaction in acetone and cyclohexane is found to increase by more than 10 kcal/mol when switching the solvent model from an empirical to explicitly polarizable one. The reason for this is discussed based on the parametrization of empirical nonpolarizable models.  相似文献   

19.
The explicit treatment of polarization as a many-body interaction in condensed-phase systems represents a current problem in empirical force-field development. Although a variety of efficient models for molecular polarization have been suggested, polarizable force fields are still far from common use nowadays. In this work, we consider interactive polarization models employing Thole's short-range damping scheme and assess them for application on polypeptides. Despite the simplicity of the model, we find mean polarizabilities and anisotropies of amino acid side chains in excellent agreement with MP2/cc-pVQZ benchmark calculations. Combined with restrained electrostatic potential (RESP) derived atomic charges, the models are applied in a quantum-mechanical/molecular-mechanical (QM/MM) approach. An iterative scheme is used to establish a self-consistent mutual polarization between the QM and MM moieties. This ansatz is employed to study the influence of the protein polarizability on calculated optical properties of the protonated Schiff base of retinal in rhodopsin (Rh), bacterio-rhodopsin (bR), and pharaonis sensory rhodopsin II (psRII). The shifts of the excitation energy due to the instantaneous polarization response of the protein to the charge transfer on the retinal chromophore are quantified using the high level ab initio multireference spectroscopy-oriented configuration interaction (SORCI) method. The results are compared with those of previously published QM1/QM2/MM models for bR and psRII.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号