首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

5.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

6.
夏金梅  林凤鸣  元英进 《化学进展》2007,19(7):1159-1163
纤维素生产乙醇的关键问题之一是水解产生的抑制性物质对乙醇发酵具有明显的抑制效应,因而引起了国内外研究者的广泛关注.研究发现,在抑制剂存在下,酵母在基因表达水平,蛋白水平和代谢物水平都有相应的耐受响应,且这些响应错综复杂.从系统角度运用组学的方法研究这一体系将有助于全面深入了解酵母的耐受机制.本文综述了系统研究的思路和方法在酵母对抑制剂耐受方面的研究状况;对主要研究手段和成果进行了回顾;并对酵母发酵乙醇系统分析的前景进行了展望.  相似文献   

7.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

8.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

9.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

10.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

11.
Zhiping Peng 《大学化学》2020,35(5):184-190
In response to the COVID-19 epidemic prevention, the "polymer chemistry" course teaching team actively explored the "learning-centered" online teaching model. The students were guided to active learning by using the rich contents of Chaoxin online teaching platform and multiple online teaching activities. The basic knowledge points, difficulties and emphases of the teaching were highlighted and the real-time communication and Q&A were achieved in combination with the Tencent course live broadcast and QQ learning group. Following the concept of "students as the main body and teachers as the leading", the online teaching of "polymer chemistry" has effectively aroused the students' interest in learning, cultivated the initiative of autonomous learning, organically integrated the ideological and political education, and achieved a good learning outcome.  相似文献   

12.
In early 2020, because of the outbreak of COVID-19, students are unable to return school on time and normal teaching activities are postponed. In order to implement the requirement of "No suspension of classes" proposed by the Ministry of Education, and to ensure the teaching quality at the same time, the coordination chemistry teaching team from Nanjing University successfully carried out the exploration and practice of online teaching of coordination chemistry by using the MOOC of coordination chemistry on "Wisdom Tree" platform as the curriculum resource, QQ Live or Tencent Meeting as the online teaching tool and Pedagogy Square as the intelligent teaching platform. This teaching form reorganizes and optimizes the available resources online, and implements the student learning process evaluation and the teacher teaching evaluation. The feedback from students and teachers indicates the success of this teaching form.  相似文献   

13.
Taking the online teaching of "inorganic chemistry" course at Dezhou University as an example, the "six steps before class, six steps in class, six steps after class" online course teaching model based on "Rain Class + Dingding Live" and an online "short class" were constructed. The main content and implementation methods of teaching design, teaching process, teaching effect, teaching reflection, teaching evaluation in online course teaching were discussed. It has been proved in practice that this model can effectively improve students' learning interest and enhance teaching effects.  相似文献   

14.
Under the guidance of the "Classes are suspended but teaching and studying is in progress" put forth by the Ministry of Education in response to the epidemic of novel coronavirus pneumonia, colleges and universities responded positively. This article analyzes the problems of online teaching in local universities such as single teaching styles, variated online teaching skills of teachers, teaching concepts need to be changed and inadequate online learning capabilities of students. Strategies for improving the quality of online teaching are introduced from university, teacher and student levels, respectively. Taking the teaching of electrochemical basis as an example, the specific application of online resources and platforms in teaching practice and the results achieved are introduced in detail. It can provide a reference for university teachers to carry out the teaching with online resources.  相似文献   

15.
Under the "constructing Chinese Golden Lessons" and "ensuring learning undisrupted when classes are disrupted" appealed by Ministry of Education, we implemented organic chemistry online teaching schemes including self-study courses online, resolving doubts and expanding webcast explanation, classification-summarization and doing exercises online, as well as online discussion-answering. Students' performance was scored based process assessment including 10% self-study online, 10% resolving doubts and expanding webcast, 10% classification-summarization and doing exercises online, 5% online discussion-answering, 15% mid-term examination, and 50% semester final examination. The goal of student-centered teaching was achieved and teaching quality during epidemic period was ensured.  相似文献   

16.
为应对新型冠状病毒肺炎疫情,教师通过在线直播和线上交互讨论等形式,积极探索有效的线上教学方式,为在家自主学习的学生提供良好的学习体验。本文以"无机化学与化学分析"课程为例,面对疫情期间的特殊性,将以往的"线上线下融合"的混合式教学模式进行相应调整,提供给大家"完全线上"的远程混合式教学案例,以获得实时高效的教学效果。  相似文献   

17.
The COVID-19 broke out on a large scale, and online teaching became the first choice for teachers. Avoiding network congestion and ensuring learning effects are the dilemmas faced by online teaching. With the help of the UOOC platform and the Tencent Classroom, taking the "Polymer Structure and Performance" course as a sample, we suggested a new "online asynchronous teaching" model. Among them, the SPOC course is convenient for students to manage their learning time; "Chapter Quiz" and "Student-to-Student Mutual Evaluation" are helpful for students to obtain multi-angle feedback; project tasks are focused on case analysis so that students carry out inquiry-based learning. Overall, the "online asynchronous teaching" model breaks the time and space restrictions on teaching and learning, guarantees the quality of teaching during the epidemic, and lays the foundation for creating a "golden class".  相似文献   

18.
2020新年伊始,新冠肺炎突然来袭,为了防止聚集性感染,教育部提出了"停课不停教、停课不停学"的要求。地方普通高校学生的自律性、自觉性及能动性差别十分明显,这样的学情对如何有效开展化学专业的线上教学工作提出了更大的挑战。本文以材料化学课程线上教学为例,介绍地方普通高校化学专业线上教学工作的开展情况。针对教学过程中遇到的各种问题和采用的应对方案,探讨线上教学过程中的注意事项。希望本文能为地方普通高校化学专业线上教学工作提供有益的参考。  相似文献   

19.
Online teaching is an important measure to carry out the "no suspension of classes" during novel coronavirus pneumonia, how to make online teaching more effective is currently the major problem. In this paper, selecting Tencent Meeting and Ketangpai as the teaching platforms, complementary with the respective advantages of the other process evaluation platforms, a new form of online teaching of organic chemistry courses was built by three approaches including reorganizing teaching resources, innovating teaching activities and reforming teaching evaluation. It provides reference for the effective implementation of online teaching.  相似文献   

20.
从《物理化学(上册)》的首个教学章节“热力学第一定律”出发,以“雨课堂”和“腾讯课堂”为教学平台,分析了学生应该如何适应从“线下教学”到“线上教学”的转变,扮演好“学生”在网络教学中的角色,并以学生的这些注意事项为切入点,论述了教师应该做出的相应转变,以求引导学生更高效地完成线上学习任务。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号