首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
广黏弹组合模型的等效性及其基本性质   总被引:1,自引:0,他引:1  
对广义黏弹组合模型的等效性及其基本性质进行了研究,结果表明:广义Maxwell 模型由于并联结构,其蠕变柔量很难得到. 但提出了求解广义Maxwell模型蠕变柔量的 方法,给出了其具体表达式,且在此基础上证明了广义Maxwell模型与Kelvin链的等效性, 建立了这两个模型物理参数间的转换关系式. 证明了广义黏弹组合模型的一个基本性质:当 将模型的松弛时间谱和延迟时间谱由大到小顺序排列时,松弛时间与延迟时间互不相等,且 相互交织,两相邻松弛时间中间有且仅有一个延迟时间,同时,两相邻延迟时间中间有且仅有一个松 弛时间;当两者同阶相比时,延迟时间总是大于松弛时间. 这一基本性质明确了使用广义黏 弹组合模型来描述现实中某种特定材料的黏弹性行为时,该材料必须具备的基本条件,因此, 它可作为这类流变模型在工程应用中的一个实用判据. Wiechert模型和广义中村模型、广义 Jeffreys模型和广义N-K模型、Maxwell链和广义Kelvin模型之间的等效性可作为特例. 最后,实例验证了所提出的求解广义黏弹组合模型蠕变柔量方法及其基本性质.  相似文献   

2.
对广义黏弹组合模型的等效性及其基本性质进行了研究,结果表明:广义Maxwell模型由于并联结构,其蠕变柔量很难得到. 但提出了求解广义Maxwell模型蠕变柔量的方法,给出了其具体表达式,且在此基础上证明了广义Maxwell模型与Kelvin链的等效性,建立了这两个模型物理参数间的转换关系式. 证明了广义黏弹组合模型的一个基本性质:当将模型的松弛时间谱和延迟时间谱由大到小顺序排列时,松弛时间与延迟时间互不相等,且相互交织,两相邻松弛时间中间有且仅有一个延迟时间,同时,两相邻延迟时间中间有且仅有一个松弛时间;当两者同阶相比时,延迟时间总是大于松弛时间. 这一基本性质明确了使用广义黏弹组合模型来描述现实中某种特定材料的黏弹性行为时,该材料必须具备的基本条件,因此,它可作为这类流变模型在工程应用中的一个实用判据. Wiechert模型和广义中村模型、广义Jeffreys模型和广义N-K模型、Maxwell链和广义Kelvin模型之间的等效性可作为特例.最后,实例验证了所提出的求解广义黏弹组合模型蠕变柔量方法及其基本性质.   相似文献   

3.
关于黏弹性材料的广义Maxwell模型   总被引:1,自引:0,他引:1  
帅词俊  段吉安  王炯 《力学学报》2006,38(4):565-569
采用流变力学分析黏弹性材料的流变特性时,常要用到广义Maxwell模型 表达的应力松弛模量. 而从试验中获得的应力松弛模量,其表达式常为 Kohlrausch-William-Watts function(KWW函数)形式. 通过把KWW函数和广义Maxwell模型的拟合问题转化为两 矩阵相等的求解问题后,又把两矩阵的相等等价于两矩阵差值向量的一阶范数为无穷小的问 题,并通过引入广义逆矩阵,求得两矩阵差值向量的一阶范数的最小值,最后以一阶范数的 最小值为目标函数,松弛时间为约束条件,利用单纯形法对两矩阵差值向量的一阶范数的最 小值优化,从而提出了一种针对黏弹材料的KWW函数与广义Maxwell模型转换的计算方法. 借助于MATLAB软件,实现了对黏弹材料的广义Maxwell模型的拟合.  相似文献   

4.
康永刚  张秀娥 《力学学报》2012,44(2):456-459
在应力作用下, 材料的力学参数随着微观结构的变化而变化, 需要考虑参数的时间效应. 利用黏滞系数随时间变化的黏性元件, 构造出非定常Maxwell模型、非定常Kelvin模型和非定常Zener模型. 求解非定常模型的微分型本构方程得到它们的松弛模量、蠕变柔量和卸载方程. 结果表明, 可以把常见的经验松弛函数和经验蠕变函数视为非定常微分型本构模型.   相似文献   

5.
王苏  赵均海  姜志琳  朱倩 《力学季刊》2019,40(3):603-612
采用统一强度理论并考虑材料拉伸与压缩弹性模量的差异性,建立均匀内压作用下双层厚壁圆筒的应力表达式,获得了其内压相应的弹性极限解答、塑性极限解答,并分析拉压强度比、拉压模量系数、统一强度理论参数、半径比及分层半径对弹性、塑性极限内压的影响规律.研究结果表明:弹性、塑性极限内压随拉压强度比的增加而减小,但随统一强度理论参数、半径比的增加而增大;弹性极限内压随分层半径的增加呈现先增大后减小变化,随拉压模量系数的增加而一直减小;塑性极限内压与拉压模量系数、分层半径无关.应用于实际工程时,可根据所得结果选择合理的壁厚及分层半径,再根据材料特性确定其他参数,以便更加准确地计算结构的受力状况.  相似文献   

6.
单边自由的固支岩板黏弹性行为分析及其应用   总被引:2,自引:0,他引:2  
利用黏弹性理论对单边自由的固支岩板的黏弹性力学行为进行了分析研究,重新导出了相空间中黏弹性参数的变换关系式,并利用此式建立了单边自由的固支岩板的广义Kelvin黏弹性分析格式,将其应用于某层状岩体洞室顶板的变形特性分析.计算表明,其与实际勘察结果比较接近,可供工程实际应用参考.  相似文献   

7.
大坝坝基的长期稳定性是大坝运营安全的重要保障, 而坝基岩体中的软弱夹层是影响其变形和稳定的重要因素. 为研究大岗山水电站坝基中辉绿岩脉软弱夹层在长期载荷作用下的变形机制, 在坝基边坡的试验平硐内垂直于软弱夹层进行了现场大型圆形刚性承压板压缩蠕变试验. 辨识得到可较准确表示其蠕变特性的5参量广义Kelvin模型, 克服了3 参量广义Kelvin模型收敛过快的缺陷. 基于弹性力学中的布辛涅斯克问题, 通过黏弹性理论中的拉普拉斯变换及逆变换, 推导出了刚性承压板下部岩体的5参量广义Kelvin模型表示的黏弹性变形公式, 并以此为基础反演得到流变参数.  相似文献   

8.
研究了轴向加速黏弹性Timoshenko梁的非线性参数振动。参数激励是由径向变化张力和轴向速度波动引起的。引入了取决于轴向加速度的径向变化张力,同时还考虑了有限支撑刚度对张力的影响。应用广义哈密尔顿原理建立了Timoshenko梁耦合平面运动的控制方程和相关的边界条件。黏弹性本构关系采用Kelvin模型并引入物质时间导数。耦合方程简化为具有随时间和空间变化系数的积分-偏微分型非线性方程。采用直接多尺度法分析了Timoshenko梁的组合参数共振。根据可解性条件得到了Timoshenko梁的稳态响应,并应用Routh-Hurvitz判据确定了稳态响应的稳定性。最后通过一系列数值例子描述了黏弹性系数、平均轴向速度、剪切变形系数、转动惯量系数、速度脉动幅值、有限支撑刚度参数以及非线性系数对稳态响应的影响。  相似文献   

9.
聚硅氧烷硅胶是一类以Si—O键为主链、硅原子上直接连接有机基团的无色透明高分子聚合物,因其具有优异的超弹性性能而广泛应用于精密减震结构、柔性电子器件等领域.在聚硅氧烷硅胶减震结构和柔性电子器件的设计中,材料在大变形和动态加载下的黏超弹性力学行为的精确描述至关重要.本文针对该问题进行了系统的研究:首先,将该硅胶的超弹性和黏弹性行为进行解耦,确定其黏超弹性本构方程的基本框架;其次,基于单轴拉压、平面拉伸试验确定其准静态超弹性模型的各项参数;再次,利用霍普金森压杆冲击试验确定其黏弹性模型的各项参数;在此基础上,将超弹性和黏弹性模型合并为适用于大应变和大应变率的黏超弹性动态本构模型;最后,利用落锤冲击试验对该硅胶薄片的冲击变形行为进行了研究,并利用上述建立的动态本构模型对落锤冲击过程进行了有限元模拟.结果表明:本文建立的黏超弹性本构模型可有效预测该硅胶在冲击载荷下的力学行为,从而为聚硅氧烷硅胶减震结构和柔性电子器件的优化设计提供了理论和应用基础.  相似文献   

10.
聚硅氧烷硅胶是一类以Si——O键为主链、硅原子上直接连接有机基团的无色透明高分子聚合物, 因其具有优异的超弹性性能而广泛应用于精密减震结构、柔性电子器件等领域. 在聚硅氧烷硅胶减震结构和柔性电子器件的设计中, 材料在大变形和动态加载下的黏超弹性力学行为的精确描述至关重要. 本文针对该问题进行了系统的研究:首先, 将该硅胶的超弹性和黏弹性行为进行解耦, 确定其黏超弹性本构方程的基本框架;其次, 基于单轴拉压、平面拉伸试验确定其准静态超弹性模型的各项参数;再次, 利用霍普金森压杆冲击试验确定其黏弹性模型的各项参数;在此基础上, 将超弹性和黏弹性模型合并为适用于大应变和大应变率的黏超弹性动态本构模型;最后, 利用落锤冲击试验对该硅胶薄片的冲击变形行为进行了研究, 并利用上述建立的动态本构模型对落锤冲击过程进行了有限元模拟. 结果表明:本文建立的黏超弹性本构模型可有效预测该硅胶在冲击载荷下的力学行为, 从而为聚硅氧烷硅胶减震结构和柔性电子器件的优化设计提供了理论和应用基础.   相似文献   

11.
The influences of interfacial tension and compressibility to the linear viscoelastic properties of nanocomposite and nanoporous materials are considered theoretically. The effective bulk and shear moduli of the systems are calculated within the generalized composite sphere model which takes into account the effect of interfacial tension. It is found that frequency dependence of the effective dynamic shear and bulk moduli of nanocomposites with the compressible elastic matrix and viscous inclusions may be represented in terms of the Zener model comprising of the viscoelastic Kelvin element in series with the elastic spring. The relations of the Zener model parameters with the material characteristics are revealed. The physical interpretation of the frequency behavior of the dynamic shear and bulk moduli against the interfacial tension, component compressibility, viscosity, and inclusion volume fraction is discussed. Victor G. Oshmyan deceased.  相似文献   

12.
Effect of viscoelastic bed on the hydroelastic response analysis of very large floating structures is studied using the linear water wave theory and small amplitude structural response in finite water depth. The floating structure is modeled using Euler–Bernoulli beam equation and the bottom bed is assumed to be viscoelastic in nature and is based on the Voigt’s model. The dispersion relation, phase speed and response amplitude of the floating structure as well as viscoelastic bed surface, pressure distribution along water depth are analyzed to study the effect of viscoelastic bed parameters, flexural rigidity of the floating structure, time period on flexural gravity wave motion. The study reveals that structural response of the floating structure can be mitigated for moderate thickness of the viscoelastic layer. Moreover, both shear modulus and viscosity of the viscoelastic layer play dominant role in reducing the structural response compared to the flexural rigidity of the structure. Further, pressure distribution within the viscoelastic bed decreases at a higher rate compared to the inviscid fluid layer irrespective of shear modulus and viscosity. The present study will be of immense help in the site selection of very large floating structures in the coastal water and installation of various marine facilities over muddy bed.  相似文献   

13.
 It is known that the zero shear viscosity of a polydisperse melt of linear polymers depends only on its weight-average molecular weight, whereas its recoverable compliance increases with polydispersity. These facts can be exploited to design model viscoelastic fluids using mixtures of short and long chains of the same homopolymer (bidisperse mixtures). The composition required to obtain a bidisperse mixture with the desired viscosity can be calculated from the molecular weights of the components, and the known relationship between viscosity and weight-average molecular weight. The terminal viscoelastic properties of such a bidisperse mixture are estimated from theoretical predictions for the compliance of bidisperse mixtures available in the literature. These predictions suggest that the elasticity of bidisperse mixtures can be varied independent of their viscosity by appropriately choosing the molecular weights of their components and their composition. This strategy is applied here on bidisperse mixtures of monodisperse 1,4-polyisoprene, which are shown to display second-order fluid behavior over a reasonable range of accessible shear rates. The same procedure is also applied to mixtures of PDMS polymers which are not particularly monodisperse. Rheological measurements show that the elasticity of these polyisoprene and PDMS mixtures can indeed be varied without changing their viscosity. Such materials are ideally suited to study structure-rheological properties relationships in blends of immiscible viscoelastic fluids. Received: 12 April 2001 Accepted: 28 August 2001  相似文献   

14.
The viscoelastic behavior of polymeric systems based upon the Leonov model has been examined for (i) the stress growth at constant strain rate, (ii) the stress growth at constant speed and (iii) the elastic recovery in elongational flow. The model parameters have been determined from the available rheological data obtained either in steady shear flow (shear viscosity and first normal-stress difference as a function of shear rate) or oscillatory flow (storage and loss moduli as a function of frequency in the linear region) or from extensional flow at very small strain rates (time-dependent elongation viscosity in the linear viscoelastic limit). In addition, the effect of the parameter characterizing the strain-hardening of the material during elongation has also been studied. The estimation of this parameter has been based upon the structural characteristics of the polymer chain which include the critical molecular weight and molecular weight of an independent segment. Five different polymer melts have been considered with varying number of modes (maximum four modes). Resulting predictions are in fair agreement with corresponding experimental data in the literature.  相似文献   

15.
Current nanoindentation measurement techniques normally assume that one material function (such as the Poisson's function) is a constant, and measures just one material function, such as the creep compliance in shear. For materials with significant viscoelastic effects and unknown viscoelastic functions, assuming a constant for one material function is not satisfactory. Accurate measurements require simultaneously determining two independent material functions. This paper provides a method to use nanoindentation to measure both bulk and shear relaxation functions. Two different nanoindenter tips, namely Berkovich and spherical indenters, are used for nanoindentation on polymers. Any two independent viscoelastic functions, such as bulk relaxation modulus and shear relaxation modulus, have different representations in the load–displacement curves obtained with these two indenters so that the two independent viscoelastic functions can be separated and determined. Two polymers, poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA) were used in nanoindentation. Nanoindentation measurements were conducted on PVAc above glass transition temperature (Tg) and on PMMA below Tg. Both shear and bulk relaxation functions determined from nanoindentation were found in a reasonably good agreement with data obtained from conventional tests, providing validation of the method presented. The new method can be applied in measurements of two independent viscoelastic functions at sub-micron scale of very small amounts of materials such as polymeric films on a substrate, heterogeneous materials such as bones, tissues, and nanocomposites.  相似文献   

16.
Viscoelasticity and temperature dependences are explained using molecular dynamics and control theory. We have previously (Borg and Pääkkönen, 2009 [1], [2], [3]) applied control theory to model the relationship between the relaxation modulus, dynamic and shear viscosity, transient flow effects, power law and Cox–Merz rule related to the molecular weight distribution (MWD), and here these topics are discussed more generally. In this paper we show the direct simple relation to molecular dynamics using structural models comprising dumb-bells (Bird et al., 1987 [4]) with internal viscosity and elasticity in a statistical tube. The dumb-bell model is used to obtain the linear relation to the elasticity P′ value of function P′(ω) and the relation to the viscosity P″ value of function P″(ω) from chain friction. The applied principle is also valid for the relaxation modulus or shear viscosity. A new principle is presented for obtaining absolute values such as zero viscosity by modelling, which is first used to obtain absolute values for a target point at a high rate for unentangled chains (since close relaxed states of chain topology are much more complicated). An analytical model for the temperature dependency of viscoelastic flows is presented, which is many times more accurate than WLF or Arrhenius equations. Control theory and variations of tube diameter as a function of temperature gives linear relation between chain dynamics and viscoelastic properties. New compact formulas are presented to simultaneously model different polymer flows and temperatures. We have also found that the MWDs computed from the relaxation modulus or complex and the shear viscosity are not temperature sensitive, in contrast to what time–temperature superposition (TTS) suggests, although absolute viscoelastic values make them appear very temperature-dependent. TTS is verified for thermorheologically simple materials, and the reasons for it not holding are explained.  相似文献   

17.
The problem of decaying rotation of a disk floating on the surface of a viscoelastic fluid in a cylindrical container is solved by numerical methods. The motion is found to have the form of decaying oscillations observed previously for water. In addition to the viscosity coefficient, the constructed mathematical model of the viscoelastic fluid has two more independent parameters: shear modulus and time of relaxation of elastic stresses. Elastic parameters of water are determined through comparisons with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 1, pp. 100–103, January–February, 2008.  相似文献   

18.
Flows involving different types of chain branches have been modelled as functions of the uniaxial elongation using the recently generated constitutive model and molecular dynamics for linear viscoelasticity of polymers. Previously control theory was applied to model the relationship between the relaxation modulus, dynamic and shear viscosity, transient flow effects, power law and Cox–Merz rule related to the molecular weight distribution (MWD) by melt calibration. Temperature dependences and dimensions of statistical chain tubes were also modelled. The present study investigated the elongational viscosity. We introduced earlier the rheologically effective distribution (RED), which relates very accurately and linearly to the viscoelastic properties. The newly introduced effective strain-hardening distribution (REDH) is related to long-chain branching. This REDH is converted to real long-chain branching distribution by melt calibration and a simple relation formula. The presented procedure is very effective at characterizing long-chain branches, and also provides information on their structure and distribution. Accurate simulations of the elongational viscosities of low-density polyethylene, linear low-density polyethylene and polypropylene, and new types of MWDs are presented. Models are presented for strain-hardening that includes the monotonic increase and overshoot effects. Since the correct behaviour at large Hencky strains is still unclear, these theoretical models may aid further research and measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号