首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies a discrete-time Geo/G/1 retrial queue where the server is subject to starting failures. We analyse the Markov chain underlying the regarded queueing system and present some performance measures of the system in steady-state. Then, we give two stochastic decomposition laws and find a measure of the proximity between the system size distributions of our model and the corresponding model without retrials. We also develop a procedure for calculating the distributions of the orbit and system size as well as the marginal distributions of the orbit size when the server is idle, busy or down. Besides, we prove that the M/G/1 retrial queue with starting failures can be approximated by its discrete-time counterpart. Finally, some numerical examples show the influence of the parameters on several performance characteristics. This work is supported by the DGINV through the project BFM2002-02189.  相似文献   

2.
This paper analyses a discrete-time Geo/G/1 retrial queue with batch arrivals in which individual arriving customers have a control of admission. We study the underlying Markov chain at the epochs immediately after the slot boundaries making emphasis on the computation of its steady-state distribution. To this end we employ numerical inversion and maximum entropy techniques. We also establish a stochastic decomposition property and prove that the continuous-time M/G/1 retrial queue with batch arrivals and control of admission can be approximated by our discrete-time system. The outcomes agree with known results for special cases.  相似文献   

3.
4.
有两个服务阶段、反馈、强占型的M/G/1重试排队   总被引:1,自引:0,他引:1  
在假定重试区域中只有队首的顾客允许重试的条件下,重试时间是一般分布时,考虑具有两个服务阶段、反馈、强占型的M/G/1重试排队系统.得到了系统稳态的充要条件.求得稳态时系统队长和重试区域中队长分布及相关指标,并且得到了系统的随机分解性质.  相似文献   

5.
This paper is concerned with a discrete-time Geo/G/1 retrial queue with preferred, impatient customers and general retrial times. We analyze the Markov chain underlying the considered queueing system and derive its ergodicity condition. The system state distribution as well as the orbit size and the system size distributions are obtained in terms of their generating functions. These generating functions yield exact expressions for different performance measures. Besides, the stochastic decomposition property and the corresponding continuous-time queueing system are investigated. Finally, some numerical examples are provided to illustrate the effect of priority and impatience on several performance characteristics of the system.  相似文献   

6.
We consider a discrete-time Geo/G/1 retrial queue where the service time distribution has a finite exponential moment. We show that the tail of the queue size distribution is asymptotically geometric. Remarkably, the result is inconsistent with the corresponding result in the continuous-time counterpart, the M/G/1 retrial queue, where the tail of the queue size distribution is asymptotically given by a geometric function multiplied by a power function.  相似文献   

7.
Wang  Jinting  Cao  Jinhua  Li  Quanlin 《Queueing Systems》2001,38(4):363-380
Retrial queues have been widely used to model many problems arising in telephone switching systems, telecommunication networks, computer networks and computer systems, etc. It is of basic importance to study reliability of retrial queues with server breakdowns and repairs because of limited ability of repairs and heavy influence of the breakdowns on the performance measure of the system. However, so far the repairable retrial queues are analyzed only by queueing theory. In this paper we give a detailed analysis for reliability of retrial queues. By using the supplementary variables method, we obtain the explicit expressions of some main reliability indexes such as the availability, failure frequency and reliability function of the server. In addition, some special queues, for instance, the repairable M/G/1 queue and repairable retrial queue can be derived from our results. These results may be generalized to the repairable multi-server retrial models.  相似文献   

8.
An M/G/1 retrial queueing system with additional phase of service and possible preemptive resume service discipline is considered. For an arbitrarily distributed retrial time distribution, the necessary and sufficient condition for the system stability is obtained, assuming that only the customer at the head of the orbit has priority access to the server. The steady-state distributions of the server state and the number of customers in the orbit are obtained along with other performance measures. The effects of various parameters on the system performance are analysed numerically. A general decomposition law for this retrial queueing system is established.  相似文献   

9.
We consider a discrete-time Geo/G/1 retrial queue with preemptive resume, collisions of customers and general retrial times. We analyze the Markov chain underlying the considered queueing system and derive its ergodicity condition. Using generating function technique, the system state distribution as well as the orbit size and the system size distributions are studied. Some interesting and important performance measures are obtained. Besides, the stochastic decomposition property is investigated. Finally, some numerical examples are provided.  相似文献   

10.
We consider anM/M/1 retrial queueing system in which the retrial time has a general distribution and only the customer at the head of the queue is allowed to retry for service. We find a necessary and sufficient condition for ergodicity and, when this is satisfied, the generating function of the distribution of the number of customers in the queue and the Laplace transform of the waiting time distribution under steady-state conditions. The results agree with known results for special cases.Supported by KOSEF 90-08-00-02.  相似文献   

11.
We consider a single server queueing system with two phases of heterogeneous service and Bernoulli vacation schedule which operate under the so called linear retrial policy. This model extends both the classical M/G/1 retrial queue with linear retrial policy as well as the M/G/1 queue with two phases of service and Bernoulli vacation model. We carry out an extensive analysis of the model.  相似文献   

12.
We consider anM/G/1 priority retrial queueing system with two types of calls which models a telephone switching system and a cellular mobile communication system. In the case that arriving calls are blocked due to the server being busy, type I calls are queued in a priority queue of finite capacityK whereas type II calls enter the retrial group in order to try service again after a random amount of time. In this paper we find the joint generating function of the numbers of calls in the priority queue and the retrial group in closed form. When 1=0, it is shown that our results are consistent with the known results for a classical retrial queueing system.  相似文献   

13.
We consider an M [X]/G/1 retrial queue subject to breakdowns where the retrial time is exponential and independent of the number of customers applying for service. If a coming batch of customers finds the server idle, one of the arriving customers begins his service immediately and the rest joins a retrial group (called orbit) to repeat his request later; otherwise, if the server is busy or down, all customers of the coming batch enter the orbit. It is assumed that the server has a constant failure rate and arbitrary repair time distribution. We study the ergodicity of the embedded Markov chain, its stationary distribution and the joint distribution of the server state and the orbit size in steady-state. The orbit and system size distributions are obtained as well as some performance measures of the system. The stochastic decomposition property and the asymptotic behavior under high rate of retrials are discussed. We also analyse some reliability problems, the k-busy period and the ordinary busy period of our retrial queue. Besides, we give a recursive scheme to compute the distribution of the number of served customers during the k-busy period and the ordinary busy period. The effects of several parameters on the system are analysed numerically. I. Atencia’s and Moreno’s research is supported by the MEC through the project MTM2005-01248.  相似文献   

14.
I. Atencia  P. Moreno 《TOP》2003,11(2):285-310
We analyse a single-server retrial queueing system with infinite buffer, Poisson arrivals, general distribution of service time and linear retrial policy. If an arriving customer finds the server occupied, he joins with probabilityp a retrial group (called orbit) and with complementary probabilityq a priority queue in order to be served. After the customer is served completely, he will decide either to return to the priority queue for another service with probability ϑ or to leave the system forever with probability =1−ϑ, where 0≤ϑ<1. We study the ergodicity of the embedded Markov chain, its stationary distribution function and the joint generating function of the number of customers in both groups in the steady-state regime. Moreover, we obtain the generating function of system size distribution, which generalizes the well-knownPollaczek-Khinchin formula. Also we obtain a stochastic decomposition law for our queueing system and as an application we study the asymptotic behaviour under high rate of retrials. The results agree with known special cases. Finally, we give numerical examples to illustrate the effect of the parameters on several performance characteristics.  相似文献   

15.
We present an algorithm to find an approximation for the stationary distribution for the general ergodic spatially-inhomogeneous block-partitioned upper Hessenberg form. Our approximation makes use of an associated upper block-Hessenberg matrix which is spatially homogeneous except for a finite number of blocks. We treat theMAP/G/1 retrial queue and the retrial queue with two types of customer as specific instances and give some numerical examples. The numerical results suggest that our method is superior to the ordinary finite-truncation method.  相似文献   

16.
Tao Yang  Hui Li 《Queueing Systems》1995,21(1-2):199-215
In this paper, we study the steady-state queue size distribution of the discrete-timeGeo/G/1 retrial queue. We derive analytic formulas for the probability generating function of the number of customers in the system in steady-state. It is shown that the stochastic decomposition law holds for theGeo/G/1 retrial queue. Recursive formulas for the steady-state probabilities are developed. Computations based on these recursive formulas are numerically stable because the recursions involve only nonnegative terms. Since the regularGeo/G/1 queue is a special case of theGeo/G/1 retrial queue, the recursive formulas can also be used to compute the steady-state queue size distribution of the regularGeo/G/1 queue. Furthermore, it is shown that a continuous-timeM/G/1 retrial queue can be approximated by a discrete-timeGeo/G/1 retrial queue by dividing the time into small intervals of equal length and the approximation approaches the exact when the length of the interval tends to zero. This relationship allows us to apply the recursive formulas derived in this paper to compute the approximate steady-state queue size distribution of the continuous-timeM/G/1 retrial queue and the regularM/G/1 queue.Partially supported by the Natural Sciences and Engineering Research Council of Canada through grant OGP0046415.Partially supported by the Natural Sciences and Engineering Research Council of Canada through grant OGP0105828.  相似文献   

17.
A discrete-time GI/G/1 retrial queue with Bernoulli retrials and time-controlled vacation policies is investigated in this paper. By representing the inter-arrival, service and vacation tlmes using a Markov-based approach, we are able to analyze this model as a level-dependent quasi-birth-and-death (LDQBD) process which makes the model algorithmically tractable. Several performance measures such as the stationary probability distribution and the expected number of customers in the orbit have been discussed with two different policies: deterministic time-controlled system and random time-controlled system. To give a comparison with the known vacation policy in the literature, we present the exhaustive vacation policy as a contrast between these policies under the early arrival system (EAS) and the late arrival system with delayed access (LAS-DA). Significant difference between EAS and LAS-DA is illustrated by some numerical examples.  相似文献   

18.
有启动失败和可选服务的M/G/1重试排队系统   总被引:1,自引:0,他引:1  
考虑具有可选服务的M/G/1重试排队模型,其中服务台有可能启动失败.系统外新到达的顾客服从参数为λ的泊松过程.重试区域只允许队首顾客重试,重试时间服务一般分布.所有的顾客都必须接受必选服务,然而只有其中部分接受可选服务.通过嵌入马尔可夫链法证明了系统稳态的充要条件.利用补充变量的方法得到了稳态时系统和重试区域中队长分布.我们还得到重试期间服务台处于空闲的概率,重试区域为空的概率以及其他各种指标.并证出在把系统中服务台空闲和修理的时间定义为广义休假情况下也具有随机分解特征.  相似文献   

19.
We consider a finite buffer capacity GI/GI/c/K-type retrial queueing system with constant retrial rate. The system consists of a primary queue and an orbit queue. The primary queue has \(c\) identical servers and can accommodate up to \(K\) jobs (including \(c\) jobs under service). If a newly arriving job finds the primary queue to be full, it joins the orbit queue. The original primary jobs arrive to the system according to a renewal process. The jobs have i.i.d. service times. The head of line job in the orbit queue retries to enter the primary queue after an exponentially distributed time independent of the length of the orbit queue. Telephone exchange systems, medium access protocols, optical networks with near-zero buffering and TCP short-file transfers are some telecommunication applications of the proposed queueing system. The model is also applicable in logistics. We establish sufficient stability conditions for this system. In addition to the known cases, the proposed model covers a number of new particular cases with the closed-form stability conditions. The stability conditions that we obtained have clear probabilistic interpretation.  相似文献   

20.
An M/G/1 retrial queue with two-phase service and feedback is studied in this paper, where the server is subject to starting failures and breakdowns during service. Primary customers get in the system according to a Poisson process, and they will receive service immediately if the server is available upon arrival. Otherwise, they will enter a retrial orbit and are queued in the orbit in accordance with a first-come-first-served (FCFS) discipline. Customers are allowed to balk and renege at particular times. All customers demand the first "essential"service, whereas only some of them demand the second "multi-optional" service. It is assumed that the retrial time, service time and repair time of the server are all arbitrarily distributed.The necessary and sufficient condition for the system stability is derived. Using a supplementary variable method, the steady-state solutions for some queueing and reliability measures of the system are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号