首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 261 毫秒
1.
In this paper, we consider a Kudryashov‐Sinelshchikov equation that describes pressure waves in a mixture of a liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer between liquid and gas bubbles. We show that this equation is rich in conservation laws. These conservation laws have been found by using the direct method of the multipliers. We apply the Lie group method to derive the symmetries of this equation. Then, by using the optimal system of 1‐dimensional subalgebras we reduce the equation to ordinary differential equations. Finally, some exact wave solutions are obtained by applying the simplest equation method.  相似文献   

2.
An analytic approximate solution is presented for the natural convective dissipative heat transfer of an incompressible, third grade, non-Newtonian fluid flowing past an infinite porous plate embedded in a Darcy–Forchheimer porous medium. The mathematical model is developed in an (x,y) coordinate system. Using a set of transformations, the momentum equation is rendered one-dimensional and a partly linearized heat conservation equation is derived. The viscoelastic formulation presented by Akyildiz [Akyildiz FT. A note on the flow of a third grade between heated parallel plates. Int J Non-Linear Mech 2001;36:349–52] is adopted, which generates lateral mass and viscoelastic terms in the heat conservation equation, as well as in the momentum equation. A number of special cases of the general transformed model are discussed. A homotopy analysis method (HAM) is implemented to solve, with appropriate boundary conditions, the coupled third-order, second degree ordinary differential equation for momentum and the second-order, fourth degree heat conservation equation.  相似文献   

3.
A multispeed heat transfer lattice Boltzmann model is presented. The model possesses the perfect gas state equation with arbitrary special heat ratio. The macroscopic conservation equations are derived by the Chapman-Enskog method. The one dimensional simulation for the sinusoidal energy distributions are compared with the theoretical results, showing good agreement. The theoretical conductivity in the energy equation is in accordance with the simulations.  相似文献   

4.
首先,我们给出了引入伴随方程(组)扩充原方程(组)的策略使给定偏微分方程(组)的扩充方程组具有对应泛瓯即,成为Lagrange系统的方法,以此为基础提出了作为偏微分方程(组)传统守恒律和对称概念的一种推广-偏微分方程(组)扩充守恒律和扩充对称的概念;其次,以得到的Lagrange系统为基础给定了确定原方程(组)扩充守恒律和扩充对称的方法,从而达到扩充给定偏微分方程(组)的首恒律和对称的目的;第三,提出了适用于一般形式微分方程(组)的计算固有守恒律的方法;第四,实现以上算法过程中,我们先把计算(扩充)守恒律和对称问题均归结为求解超定线性齐次偏微分方程组(确定方程组)的问题.然后,对此关键问题我们提出了用微分形式吴方法处理的有效算法;最后,作为方法的应用我们计算确定了非线性电报方程组在内的五个发展方程(组)的新守恒律和对称,同时也说明了方法的有效性.  相似文献   

5.
We determine conservation laws of the generalized KdV equation of time dependent variable coefficients of the linear damping and dispersion. The underlying equation is not derivable from a variational principle and hence one cannot use Noether’s theorem here to construct conservation laws as there is no Lagrangian. However, we show that by utilizing the new conservation theorem and the partial Lagrangian approach one can construct a number of local and nonlocal conservation laws for the underlying equation.  相似文献   

6.
This paper proposes a fluid-solid coupled finite element formulation for the transient simulation of water-steam energy systems with phase change due to boiling and condensation. As it is commonly assumed in the study of thermal systems, the transient effects considered are exclusively originated by heat transfer processes. A homogeneous mixture model is adopted for the analysis of biphasic flow, resulting in a nonlinear transient advection-diffusion-reaction energy equation and an integral form for mass conservation in the fluid, coupled to the linear transient heat conduction equation for the solid. The conservation equations are approximated applying a stabilized Petrov-Galerkin FEM formulation, providing a set of coupled nonlinear equations for mass and energy conservation. This numerical model, combined with experimental heat transfer coefficients, provides a comprehensive simulation tool for the coupled analysis of boiling and condensation processes. For the treatment of enthalpy discontinuities traveling with the flow, a novel explicit-implicit time integration method based on Crank-Nicolson scheme is proposed, analyzing its accuracy and stability properties. To reduce problem size and enhance numerical efficiency, a modal superposition method with balanced truncation is applied to the solid equations. Finally, different example problems are solved to demonstrate the capabilities, flexibility and accuracy of the proposed formulation.  相似文献   

7.
We consider conservation laws for second-order parabolic partial differential equations for one function of three independent variables. An explicit normal form is given for such equations having a nontrivial conservation law. It is shown that any such equation whose space of conservation laws has dimension at least four is locally contact equivalent to a quasi-linear equation. Examples are given of nonlinear equations that have an infinite-dimensional space of conservation laws parameterized (in the sense of Cartan-K?hler) by two arbitrary functions of one variable. Furthermore, it is shown that any equation whose space of conservation laws is larger than this is locally contact equivalent to a linear equation.  相似文献   

8.
一个解KdV方程的满足两个守恒律的差分格式   总被引:3,自引:0,他引:3  
Korteweg-de Vries(KdV)方程是人们在研究一些物理问题时得到的非线性波 动方程,其解满足无穷多个守恒律.本文为该方程设计了一种差分格式,其采用的是有限 体积法.但与传统的有限体积法不同的是,它的数值解同时满足两个相关的守恒律.这样 可以更好地保持解的物理上的守恒性质.数值例子表明这一算法是有效的.  相似文献   

9.
A method is proposed for computing the collision operator of a generalized Boltzmann kinetic equation with allowance for energy transfer from translational to vibrational or rotational degrees of freedom. The collision operator is computed using a projection method on a uniform velocity grid. The operator satisfies the mass, momentum, and energy conservation laws and vanishes for an equilibrium velocity distribution function. Approximate models are suggested that provide savings on the computation of rotational-translational relaxation. Numerical examples are presented.  相似文献   

10.
膜自由振动的多辛方法   总被引:1,自引:1,他引:0  
基于Hamilton空间体系的多辛理论研究了膜自由振动问题,讨论了构造复合离散多辛格式的方法,并构造了一种典型的9×3点半隐式的多辛复合离散格式,该格式满足多辛守恒律、能量守恒律和动量守恒律.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性.  相似文献   

11.
In the search for solutions to the important partial differential equation due to Black, Scholes and Merton potential symmetries are very useful as new solutions of the equation can be obtained as a result. These potential symmetries require that the equation be written in conserved form, ie. we need to determine conservation laws for the equation. We calculate the conservation laws utilizing the point symmetries of the equation following the method of Kara and Mahomed [A.H. Kara, F.M. Mahomed, The relationship between symmetries and conservation laws, Int. J. Theor. Phys. 39 (2000) 23–40].  相似文献   

12.
In this paper, we consider modified Korteweg-de Vries (mKdV) equation. By using the nonlocal conservation theorem method and the partial Lagrangian approach, conservation laws for the mKdV equation are presented. It is observed that only nonlocal conservation theorem method lead to the nontrivial and infinite conservation laws. In addition, invariant solution is obtained by utilizing the relationship between conservation laws and Lie-point symmetries of the equation.  相似文献   

13.
Each conservation law of a given partial differential equation is determined (up to equivalence) by a function known as the characteristic. This function is used to find conservation laws, to prove equivalence between conservation laws, and to prove the converse of Noether’s Theorem. Transferring these results to difference equations is nontrivial, largely because difference operators are not derivations and do not obey the chain rule for derivatives. We show how these problems may be resolved and illustrate various uses of the characteristic. In particular, we establish the converse of Noether’s Theorem for difference equations, we show (without taking a continuum limit) that the conservation laws in the infinite family generated by Rasin and Schiff are distinct, and we obtain all five-point conservation laws for the potential Lotka–Volterra equation.  相似文献   

14.
In this work we study the conservation laws of a modified lubrication equation, which describes the dynamics of the interfacial motion in phase transition. We show that the equation is nonlinear self-adjoint and has an exact Lagrangian with an auxiliary function. As a result, by a general theorem on conservation laws proved by Nail Ibragimov recently and Noether’s theorem, some new conservation laws for the equation are obtained. Our results show that the non-locally defined conservation laws generated by Noether’s theorem are equivalent to the local ones given by Ibragimov’s theorem.  相似文献   

15.
The equations describing the flow of a one-dimensional continuum in Lagrangian coordinates are studied in this paper by the group analysis method. They are reduced to a single Euler–Lagrange equation which contains two undetermined functions (arbitrary elements). Particular choices of these arbitrary elements correspond to different forms of the shallow water equations, including those with both, a varying bottom and advective impulse transfer effect, and also some other motions of a continuum. A complete group classification of the equations with respect to the arbitrary elements is performed.One advantage of the Lagrangian coordinates consists of the presence of a Lagrangian, so that the equations studied become Euler–Lagrange equations. This allows us to apply Noether’s theorem for constructing conservation laws in Lagrangian coordinates. Not every conservation law in Lagrangian coordinates has a counterpart in Eulerian coordinates, whereas the converse is true. Using Noether’s theorem, conservation laws which can be obtained by the point symmetries are presented, and their analogs in Eulerian coordinates are given, where they exist.  相似文献   

16.
We are interested in a probabilistic approximation of the solution to scalar conservation laws with fractional diffusion and nonlinear drift. The probabilistic interpretation of this equation is based on a stochastic differential equation driven by an α-stable Lévy process and involving a nonlinear drift. The approximation is constructed using a system of particles following a time-discretized version of this stochastic differential equation, with nonlinearity replaced by interaction. We prove convergence of the particle approximation to the solution of the conservation law as the number of particles tends to infinity whereas the discretization step tends to 0 in some precise asymptotics.  相似文献   

17.
It is known (Ibragimov, 2011; Galiakberova and Ibragimov, 2013) [14,18] that the property of nonlinear self-adjointness allows to associate conservation laws of the equations under study, with their symmetries. In this paper we show that, even when the equation is nonlinearly self-adjoint with a non differential substitution, finding the explicit form of the differential substitution can provide new conservation laws associated to its symmetries. By using the general theorem on conservation laws (Ibragimov, 2007) [11] and the property of nonlinear self-adjointness we find some new conservation laws for the modified Harry-Dym equation. By using a differential substitution we construct a conservation law for the Harry-Dym equation, which has not been derived before using Ibragimov method.  相似文献   

18.
In this paper, further study of the conservation laws of the nonlinear (1+1) wave equation involving two arbitrary functions of the dependent variable is performed. This equation is not derivable from a variational principle. By writing the equation, admitting a partial Lagrangian, in the partial Euler–Lagrange   form, partial Noether operators associated with the partial Lagrangian are obtained for all possible cases of the functions. These partial Noether operators do not form a Lie algebra in general. Partial Noether operators aid via a formula in the construction of the conservation laws of the equation. We obtain new conservation laws for the equation which have not been presented in the earlier literature.  相似文献   

19.
In this work we study the Kadomtsev–Petviashvili–Burgers equation, which is a natural model for the propagation of the two-dimensional damped waves. We show that the equation is nonlinear self-adjoint and it will become strict self-adjoint or weak self-adjoint in some equivalent form. By using Ibragimov’s theorem on conservation laws we find some conservation laws for this equation.  相似文献   

20.
In this paper, we intend to study the symmetry properties and conservation laws of a time fractional fifth-order Sawada-Kotera (S-K) equation with Riemann-Liouville derivative. Applying the well-known Lie symmetry method, we analysis the symmetry properties of the equation. Based on this, we find that the S-K equation can be reduced to a fractional ordinary differential equation with Erdelyi-Kober derivative by the similarity variable and transformation. Furthermore, we construct some conservation laws for the S-K equation using the idea in the Ibragimov theorem on conservation laws and the fractional generalization of the Noether operators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号