首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitration of p-tert-butylcalix[n]arene methyl ethers under a variety of reaction conditions has been examined. It has been determined that amongst different nitration procedures adopted (AlCl3/KNO3, HNO3/CH3COOH, HNO3/(CH3CO)2O, cerium(IV) ammonium nitrate/CH3COOH), ipso-nitration with CH3COOH/HNO3 gives best yields of p-nitrocalixarenes and work up conditions. ipso-Nitration of tetramethoxytetra-p-tert-butylcalix[4]arene gives tetramethoxytetra-p-nitrocalix[4]arene as triclinic crystals with space group with a=9.102(3) Å, b=11.623(3) Å, c=18.368(3) Å and α=77.99(2)°, β=81.10(2)°, γ=73.37(2)°. Its conformation is partial cone and it forms an exocylic 1:1 complex with DMF.  相似文献   

2.
Two new one-dimensional (1D) inorganic-organic hybrid cobalt (II) phosphites Co(HPO3) (py) (1) and [Co(OH)(py)3][Co(py)2][HPO2(OH)]3 (2) have been prepared under solvothermal conditions in the presence of pyridine (py). Compound 1 crystallizes in the monoclinic system, space group p2(1)/c, a=5.3577(7) Å, b=7.7503(10) Å, c=17.816(2) Å, β=94.327(2)°, V=737.67(16) Å3, Z=4. Compound 2 is orthorhombic, Cmcm, a=16.3252(18) Å, b=15.7005(16) Å, c=13.0440(13) Å, β=90.00° V=3343.4(6) Å3 and Z=4. Compound 1 possesses a 1D ladder-like framework constructed from CoO3N tetrahedral, HPO3 pseudo-pyramids and pyridine ligands. While compound 2 is an unusual inorganic-organic hybrid 1D chain, which consists of corner-shared six-membered rings made of CoO3N3/CoO4N2 octahedra and HPO3 pseudo-pyramids through sharing vertices.  相似文献   

3.
The rare-earth dicarboxylate hybrid materials [Ce(H2O)]2[O2C(CH2)2CO2]3 ([Ce(Suc)]) and [Sm(H2O)]2[O2C(CH2)2CO2]3·H2O ([Sm(Suc)]) have been hydrothermally synthesized (200°C, 3 days) under autogenus pressure. [Ce(Suc)] is triclinic, a=7.961 (3) Å, b=8.176 (5) Å, c=14.32 (2) Å, α=97.07° (7), β=96.75° (8), γ=103.73° (6), and z=2. The crystal structure of this compound has been determined using 3120 unique single crystal data. The final refinements let the agreement factors R1 and wR2(F2) converge to 0.0138 and 0.0363, respectively. [Ce(Suc)] is built up from infinite chains of edge-sharing nine-fold coordinated cerium atoms running along [100]. These chains are interconnected by the carbon atoms of the succinate anions, leading to a three-dimensional hybrid framework. The cell constants of [Sm(Suc)], isotypic with monoclinic C2/c [Pr(H2O)]2[O2C(CH2)2CO2]3·H2O ([Pr(Suc)]), were refined starting from X-ray powder data: a=20.275 (3) Å, b=7.919 (6) Å, c=14.130 (3) Å, and β=121.45° (1). Despite its lower symmetry, [Ce(Suc)] presents an important structural filiation with [Sm(Suc)]  相似文献   

4.
A novel three-dimensional inorganic-organic hybrid compound, Mn(H2O)[HO3PCH2NH(CH2CO2)2] from a hydrothermal reaction of Mn (II) ion with N-(phosphonomethyl)iminodiacetic acid (H4PMIDA) was reported. The compound crystallizes in the monoclinic P21/n with cell dimensions of a=5.215(5) Å, b=14.111(15) Å, c=12.727(12) Å, β=93.646(16)°, V=934.6(16) Å3 and Z=4. In this structure each Mn atom is six-coordinated with the carboxylic groups and phosphonic groups to form layers along the bc plane. These layers are further connected with the organic moieties of H2PMIDA, resulting in a complicated three-dimensional network structure. Thermogravimetric analysis, IR spectrum and magnetic susceptibility of this compound are given.  相似文献   

5.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

6.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

7.
X-ray single-crystal diffraction, high-temperature powder diffraction and differential thermal analysis at ambient and high pressure have been employed to study the crystal structure and phase transitions of guanidinium trichlorostannate, C(NH2)3SnCl3. At 295 K the crystal structure is orthorhombic, space group Pbca, Z=8, a=7.7506(2) Å, b=12.0958(4) Å and c=17.8049(6) Å, solved from single-crystal data. It is perovskite-like with distorted corner-linked SnCl6 octahedra and with ordered guanidinium cations in the distorted cuboctahedral voids. At 400 K the structure shows a first-order order-disorder phase transition. The space group is changed to Pnma with Z=4, a=12.1552(2) Å, b=8.8590(2) Å and c=8.0175(1) Å, solved from powder diffraction data and showing disordering of the guanidinium cations. At 419 K, the structure shows yet another first-order order-disorder transformation with disordering of the SnCl3 part. The space group symmetry is maintained as Pnma, with a=12.1786(2) Å, b=8.8642(2) Å and c=8.0821(2) Å. The thermodynamic parameters of these transitions and the p-T phase diagram have been determined and described.  相似文献   

8.
Three new N,N′-dialkylimidazolium salts of cadmium-thiocyanate, [EtMeIm]2[Cd2(SCN)6] (2), [C6H4(CH2ImMe)2][Cd(SCN)4] (3), [C6Me3(CH2ImMe)3][CdBr3(SCN)](NO3) (4) have been prepared, and their crystal structures have been determined by X-ray diffraction. Crystal data: 2, monoclinic, C2/c, a=18.349(4) Å, b=7.8667(18) Å, c=21.399(5) Å, β=110.346(4)°, V=2896.1(11) Å3, Z=4, and R1=0.0561; 3, monoclinic, C2/c, a=20.347(7) Å, b=14.029(5) Å, c=9.380(3) Å, β=112.034(6)°, V=2482.1(15) Å3, Z=4, and R1=0.0397; 4, hexagonal, P63, a=b=10.7634(8) Å, c=16.0315(17) Å, V=1608.4(2) Å3, Z=2, and R1=0.0569. Compound 2 consists of triply bridged infinite one-dimensional cadmium-thiocyanate chains, and two independent cadmium atoms are octahedrally coordinated in 2N4S and 4N2S geometry, respectively. In 3, the cadmium atom is octahedrally coordinated with two cis N-bonded monodentate NCS ligands and four bridging SCN in a S trans to S, and N trans to N coordination fashion, and thus form doubly bridged infinite one-dimensional chains. Whereas 4 is mononuclear, consisting of a discrete [C6Me3(CH2ImMe)3]3+ cation, a nitrate, and [CdBr3(SCN)] ion, and each cadmium(II) ion is coordinated to three bromide and one nitrogen atom of SCN ion. The structures of these compounds are dictated by the imidazolium cations.  相似文献   

9.
A hydrothermal reaction of WO3, CoCl2 and 4,4′-bipyridine, yields a novel organic-inorganic hybrid compound, Co2(bpy)6(W6O19)2, at 170°C. X-ray single crystal structure determination reveals a two-dimensional covalent structure belonging to monoclinic crystal system, space group C2/c, with cell parameters a=19.971(4) Å, b=11.523(2) Å, c=16.138(3) Å, β=96.49(3)°, V=3690.0 Å3 and Z=2. The hexatungstate, [W6O19]2−, acts as a building block in bidentate fashion to bridge the Co(II) centers in the crystal structure. The title compound is found to have an optical energy gap of 2.2 eV from UV-Vis-NIR reflectance spectra.  相似文献   

10.
Two organic-inorganic hybrid compounds, Ga2(4,4′-bpy)(PO4)2, 1, and Ga2(4,4′-bpy)(AsO4)2, 2, have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. The two compounds are isostructural and crystallize in the triclinic space group (No. 2) with a=4.9723(9) Å, b=5.770(1) Å, c=11.812(2) Å, α=78.268(3)°, β=89.159(3)° γ=88.344(3)°, V=331.7(2) Å3, Z=1, and R1=0.0377 for 1, and a=5.1111(7) Å, b=5.9327(8) Å, c=11.788(2) Å, α=79.497(2)°, β=88.870(2)°, γ=88.784(2)°, V=351.3(2) Å3, and R1=0.0264 for 2. The structure consists of neutral sheets of GaXO4 (X=P or As) which are pillared through 4,4′-bipyridine ligands. Each oxide layer, which is formed only by four-membered rings, is constructed from corner-sharing GaO4N trigonal bipyramids and XO4 tetrahedra. The title compounds are two of the few examples in which the gallium atoms are exclusively five-coordinate.  相似文献   

11.
Compounds of the general formula A2CuCl4, (where A = 4-fluoroanilinium (1) and 4-chloroanilinium (2)) were prepared, structurally characterized and their thermal and magnetic properties studied. These compounds have a layered structure, distorted perovskite, where layers of CuCl42− are sandwiched between a 4-haloanilinium cation bilayer. A single crystal X-ray diffraction study on (4-fluoroanilinium)2CuCl4, (1), shows that it crystallizes in the monoclinic P21/c space group with cell dimensions a = 15.5113(5) Å, b = 7.3788(2) Å, c = 7.0929(2) Å, β = 99.004(2)°, volume 801.81(4) Å3 at 150 K. Compound 2, (4-chloroanilinium)2CuCl4, crystallizes isostructurally to 1 at RT, but at 150 K it adopts the Pccn space group. This structural transition for 2 is reversible, and has been observed using Differential Scanning Calorimetric (DSC) measurements. The dc-magnetic studies using a SQUID magnetometer suggest that both compounds are soft ferromagnets and show an onset of long range magnetic ordering below 9 K. The ac-susceptibility measurements confirm the presence of this ferromagnetic ordering in both the compounds.  相似文献   

12.
A new compound Ce12Pt7In was synthesized and its crystal structure at 300 K has been determined from single crystal X-ray data. It is tetragonal, space group I4/mcm, Z=4, with the lattice parameters: a=12.102(1) Å and c=14.542(2) Å, wR2=0.1102, 842 F2 values, 33 variable parameters. The structure of Ce12Pt7In is a fully ordered ternary derivative of the Gd3Ga2-type. Isostructural compounds has been found to form with Pr (a=11.976(1) Å, c=14.478(2) Å), Nd (a=11.901(1) Å, c=14.471(2) Å), Gd (a=11.601(3) Å, c=14.472(4) Å), and Ho (a=11.369(1) Å, c=14.462(2) Å). Magnetic properties of Ce12Pt7In, Pr12Pt7In and Nd12Pt7In were studied down to 1.7 K. All three ternaries order magnetically at low temperatures with complex spin arrangements. The electrical resistivity of Ce12Pt7In and Nd12Pt7In is characteristic of rare-earth intermetallics.  相似文献   

13.
The quaternary alkali-metal gallium selenostannates, Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na2−xGa2−xSn1+xSe6 crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) Å, b=7.594(2) Å, c=13.842(3) Å, β=118.730(4)°, V=1226.7(5) Å3. α-KGaSnSe4 crystallizes in the tetragonal space group I4/mcm with a=8.186(5) Å and c=6.403(5) Å, V=429.1(5) Å3. β-KGaSnSe4 crystallizes in the space group P21/c with cell constants a=7.490(2) Å, b=12.578(3) Å, c=18.306(5) Å, β=98.653(5)°, V=1705.0(8) Å3. The unit cell of isostructural RbGaSnSe4 is a=7.567(2) Å, b=12.656(3) Å, c=18.277(4) Å, β=95.924(4)°, V=1741.1(7) Å3. CsGaSnSe4 crystallizes in the orthorhombic space group Pmcn with a=7.679(2) Å, b=12.655(3) Å, c=18.278(5) Å, V=1776.1(8) Å3. The structure of Na2−xGa2−xSn1+xSe6 consists of a polar three-dimensional network of trimeric (Sn,Ga)3Se9 units with Na atoms located in tunnels. The AGaSnSe4 possess layered structures. The compounds show nearly the same Raman spectral features, except for Na2−xGa2−xSn1+xSe6. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na2−xGa2−xSn1+xSe6 to 1.97 eV in CsGaSnSe4. Cooling of the melts of KGaSnSe4 and RbGaSnSe4 produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called γ-form (BaGa2S4-type) of these compounds.  相似文献   

14.
Three new compounds, a one-dimensional (1D) zinc phosphite, (C4H8N2H4)[Zn(HPO3)2] (I), two three-dimensional (3D) metal phosphites (C4H8N2H4)[Zn3(HPO3)4] (II) and (C4H8N2H4)[Zn(3−x)Cox(HPO3)4(H2O)2] (x≈0.83) (III) have been synthesized under hydrothermal conditions templated by piperazine and characterized by single-crystal X-ray diffraction, XRD, IR, UV-vis spectra and SQUID magnetometer. Compound I displays 1D chain-like structure, containing corner-shared (cs) four-membered rings. Interestingly, the structures of II and III show 1D chains similar to those observed in I. It is noteworthy that III represents the first cobalt-substituted zinc-phosphite. Crystal data: I, monoclinic, C2/c, a=17.748(2) Å, b=7.428(9) Å, c=8.8071(11) Å, β=105.345(3)°, V=1091.9 Å3, Z=4. II, Monoclinic P21/c, a=9.9435(4) Å, b=10.1438(3) Å, c=17.8164(5) Å, β=95.665(2)°, V=1788.27 Å3, Z=4, and III, Monoclinic P21/c, a=7.2338(2) Å, b=15.0238(5) Å, c=9.2153(3) Å, β=107.741(2)°, V=953.88(5) Å3, Z=2.  相似文献   

15.
The lanthanide sulphate octahydrates Ln2(SO4)3·8H2O (Ln=Ho, Tm) and the respective tetrahydrate Pr2(SO4)3·4H2O were obtained by evaporation of aqueous reaction mixtures of trivalent rare earth oxides and sulphuric acid at 300 K. Ln2(SO4)3·8H2O (Ln=Ho, Tm) crystallise in space group C2/c (Z=4, aHo=13.4421(4) Å, bHo=6.6745(2) Å, cHo=18.1642(5) Å, βHo=102.006(1) Å3 and aTm=13.4118(14) Å, bTm=6.6402(6) Å, cTm=18.1040(16) Å, βTm=101.980(8) Å3), Pr2(SO4)3·4H2O adopts space group P21/n (a=13.051(3) Å, b=7.2047(14) Å, c=13.316(3) Å, β=92.55(3) Å3). The vibrational and optical spectra of Ho2(SO4)3·8H2O and Pr2(SO4)3·4H2O are also reported.  相似文献   

16.
The high-temperature polymorphs of two photocatalytic materials, BiNbO4 and BiTaO4 were synthesized by the ceramic method. The crystal structures of these materials were determined by single-crystal X-ray diffraction. BiNbO4 and BiTaO4 crystallize into the triclinic system P1¯ (No. 2), with a=5.5376(4) Å, b=7.6184(3) Å, c=7.9324(36) Å, α=102.565(3)°, β=90.143(2)°, γ=92.788 (4)°, V=326.21 (5) Å3, Z=4 and a=5.931 (1) Å, b=7.672 (2) Å, c=7.786 (2) Å, α=102.94 (3)°, β=90.04 (3)° γ=93.53 (3)°, V=344.59 (1) Å3 and Z=4, respectively. The structures along the c-axis, consist of layers of [Bi2O2] units separated by puckered sheets of (Nb/Ta)O6 octahedra. Photocatalytic studies on the degradation of dyes indicate selectivity of BiNbO4 towards aromatics containing quinonic and azo functional groups.  相似文献   

17.
In the present paper we report on the clathrate structures of syndiotactic poly(p-methylstyrene) (s-PPMS) containing chlorobenzene (cell constants: a = 23.5 Å, b = 12.0 Å, c = 7.9 Å and γ = 112.4°; space group: P21/a) and toluene (cell constants: a = 19.5 Å, b = 13.5 Å, c = 7.9 Å and γ = 90°; space group: P21). Despite the extreme similarity between the shape and volume of these two molecules, they give rise to completely different clathrate structures, the first belonging to α class, the second belonging to β class. Moreover the clathrate form containing chlorobenzene represent the first case in which a α class clathrate form of s-PPMS contains two guest molecules in each cavity while the crystal structure here proposed for the s-PPMS/toluene clathrate represents a new example of chiral crystalline phase in which the polymer helices assume all the same chirality in the lattice. These results underline the fact that the choice of a particular structural organization in the process of clathrates’ formation of s-PPMS is not easily referable only to steric effects but seems to be dependant even on the chemical structure of the guest molecules. A comparison with syndiotactic polystyrene is also done.  相似文献   

18.
A new 1:2 ordered perovskite La(Li1/3Ti2/3)O3 has been synthesized via solid-state techniques. At temperature >1185°C, Li and Ti are randomly distributed on the B-sites and the X-ray powder patterns can be indexed in a tilted (bbc+) Pbnm orthorhombic cell (a=ac√2=5.545 Å, b=ac√2=5.561 Å, c=2ac=7.835 Å). However, for T?1175°C, a 1:2 layered ordering of Li and Ti along 〈111〉c yields a structure with a P21/c monoclinic cell with a=ac√6=9.604 Å, b=ac√2=5.552 Å, c=ac3√2=16.661 Å, β=125.12°. While this type of order is well known in the A2+(B2+1/3B5+2/3)O3 family of niobates and tantalates, La(Li1/3Ti2/3)O3 is the first example of a titanate perovskite with a 1:2 ordering of cations on the B-sites.  相似文献   

19.
The compounds M[PO2(OH)2]2·2H2O (M=Mg, Mn, Fe, Co, Ni, Zn, Cd) were prepared from super-saturated aqueous solutions at room temperature. Single-crystal X-ray structure investigations of members with M=Ni, Zn, Cd were performed at 295 and 120 K. The space-group symmetry is P21/n, Z=2. The unit-cell parameters are at 295/120 K for M=Ni: a=7.240(2)/7.202(2), b=9.794(2)/9.799(2), c=5.313(1)/5.285(1) Å, β=94.81(1)/94.38(1)°, V=375.4/371.9 Å3; M=Zn: a=7.263(2)/7.221(2), b=9.893(2)/9.899(3), c=5.328(1)/5.296(2) Å, β=94.79(1)/94.31(2)°, V=381.5/377.5 Å3; M=Cd: a=7.356(2)/7.319(2), b=10.416(2)/10.423(3), c=5.407(1)/5.371(2) Å, β=93.85(1)/93.30(2)°, V=413.4/409.1 Å3. Layers of corner-shared MO6 octahedra and phosphate tetrahedra are linked by three of the four crystallographically different hydrogen bonds. The fourth hydrogen bond (located within the layer) is worth mentioning because of the short Oh?O bond distance of 2.57-2.61 Å at room temperature (2.56-2.57 Å at 120 K); only for M=Mg it is increased to 2.65 Å. Any marked temperature-dependent variation of the unit-cell dimension is observed only vertical to the layers. The analysis of the infrared (IR) spectroscopy data evidences that the internal PO4 vibrations are insensitive to the size and the electronic configuration of the M2+ ions. The slight strengthening of the intra-molecular P-O bonds in the Mg salt is caused by the more ionic character of the Mg-O bonds. All IR spectra exhibit the characteristic “ABC trio” for acidic salts: 2900-3180 cm−1 (A band), 2000-2450 cm−1 (B band) and 1550-1750 cm−1 (C band). Both the frequency and the intensity of the A band provide an evidence that the PO2(OH)2 groups in M[PO2(OH)2]2·2H2O compounds form weaker hydrogen bonds as compared with other acidic salts with comparable O?O bond distances of about 2.60 Å. The observed shift of the O-H stretching vibrations of the water molecule in the order M=Mg>Mn≈Fe≈Co>Ni>Zn≈Cd has been discussed with respect to the influence of both the character and the strength of M↔H2O interactions.  相似文献   

20.
Two novel vanadium selenites {[VO(OH)(H2O)](SeO3)}4·2H2O 1 and (H3NCH2CH2NH3)[(VO)(SeO3)2] 2 were synthesized by hydrothermal method and their crystal structures were determined by single-crystal X-ray diffraction. It is characterized by inductively coupled plasma (ICP), thermogravimetric (TG) and elemental analyses. Compound 1 crystallizes in the monoclinic system, space group C2/c, a=21.2250(11) Å, b=12.6309(6) Å, c=17.0249(10) Å, β=96.830(3)°, V=4531.8(4) Å3 and Z=8, R1 [I>2σ(I)]=0.0344, wR2 [I>2σ(I)]=0.119; Compound 2 crystallizes in the monoclinic system, space group P21/c, a=9.6389(4) Å, b=6.9922(3) Å, c=15.0324(5) Å, β=102.297(2)°, V=989.90(7) Å3 and Z=4, R1 [I>2σ(I)]=0.0452, wR2 [I>2σ(I)]=0.117. {[VO(OH)(H2O)](SeO3)}4·2H2O has a 1D structure constructed from the {[VO(OH)(H2O)](SeO3)} chains. (H3NCH2CH2NH3)[(VO)(SeO3)2] has a layered structure composed of alternating VO5 and SeO3 units with protonated ethylenediamine as interlayer guest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号