首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出用镁铝水滑石包覆镍铁尖晶石,制备磁性纳米固体碱催化剂MgAl-OH-LDHs/NiFe2O4.用XRD, IR, TG-DTA, BET, XPS, VSM和TEM等技术及丙酮缩合反应表征了催化剂的结构和性能.结果表明该催化剂具有以NiFe2O4为磁核,以MgAl-OH-LDHs为Brönsted碱催化活性相,通过Mg-O-Fe(Ni)和/或Al-O-Fe(Ni)连接于磁核上的包覆结构,给出了该催化剂的结构模型.该催化剂用于丙酮缩合反应,273 K双丙酮醇转化率略高于MgAl-OH-LDHs,然而经外加磁场回收所得回收率大幅度提高,再次用于该反应仍保持较高的催化活性.  相似文献   

2.
Free and trioctylamine (TOA)-stabilized ruthenium nanoparticles have been prepared by decomposition of the metal precursor Ru(η6-cycloocta-1,3,5-triene)(η4-cycloocta-1,5-diene) under mild conditions (room temperature, hydrogen atmospheric pressure). The nanoparticles have been deposited on γ-Al2O3 supports having different surface area. The resulting systems are active in the hydrogenation of methyl benzoate to methyl cyclohexanoate with a reaction rate decreasing in the order Ru(TOA)/γ-Al2 O3 (high surface area, catalyst D) > Ru(TOA)/γ-Al2O3 (catalyst C) > Ru/γ-Al2O3 (high surface area, catalyst B) > Ru/γ-Al2O3 (catalyst A). Catalysts A-D are long lived and can be reused without loss of activity; they are considerably more active than a commercial ruthenium on γ-Al2O3 sample. High Resolution Transmission Electron Microscopy analyses of such systems show that the nanoparticles are homogeneously dispersed on the support and that the size distribution decreases in the order catalyst A, 2.9 nm > catalyst B, 2.8 nm > catalyst C, 2.4 nm > catalyst D, 2.3 nm. Based on the easy hydrogenation of the aromatic ring to the cyclohexane derivative, an efficient synthesis of 4-carbomethoxyformylcyclohexane, important starting material in the preparation of pharmaceutical products, from the largely available methyl 4-formylbenzoate, has been set up in the presence of catalyst D.  相似文献   

3.
Gao Y  Wang G  Huang H  Hu J  Shah SM  Su X 《Talanta》2011,85(2):1075-1080
In this paper, we utilized the instinct peroxidase-like property of Fe3O4 magnetic nanoparticles (MNPs) to establish a new fluorometric method for determination of hydrogen peroxide and glucose. In the presence of Fe3O4 MNPs as peroxidase mimetic catalyst, H2O2 was decomposed into radical that could quench the fluorescence of CdTe QDs more efficiently and rapidly. Then the oxidization of glucose by glucose oxidase was coupled with the fluorescence quenching of CdTe QDs by H2O2 producer with Fe3O4 MNPs catalyst, which can be used to detect glucose. Under the optimal reaction conditions, a linear correlation was established between fluorescence intensity ratio I0/I and concentration of H2O2 from 1.8 × 10−7 to 9 × 10−4 mol/L with a detection limit of 1.8 × 10−8 mol/L. And a linear correlation was established between fluorescence intensity ratio I0/I and concentration of glucose from 1.6 × 10−6 to 1.6 × 10−4 mol/L with a detection limit of 1.0 × 10−6 mol/L. The proposed method was applied to the determination of glucose in human serum samples with satisfactory results.  相似文献   

4.
The NO catalytic direct decomposition was studied over La2CuO4 nanofibers, which were synthesized by using single walled carbon nanotubes (CNTs) as templates under hydrothermal condition. The composition and BET specific surface area of the La2CuO4 nanofiber were La2Cu0.882+Cu0.12+O3.94 and 105.0 m2/g, respectively. 100% NO conversion (turnover frequency-(TOF): 0.17 gNO/gcatalyst s) was obtained over such nanofiber catalyst at temperatures above 300 °C with the products being only N2 and O2. In 60 h on stream testing, either at 300 °C or at 800 °C, the nanofiber catalyst still showed high NO conversion efficiency (at 300 °C, 98%, TOF: 0.17 gNO/gcatalyst s; at 800 °C, 96%, TOF: 0.16 gNO/gcatalyst s). The O2 and NO temperature programmed desorption (TPD) results indicated that the desorption of oxygen over the nanofibers occurred at 80-190 and 720-900 °C; while NO desorption happened at temperatures of 210-330 °C. NO and O2 did not competitively adsorb on the nanofiber catalyst. For outstanding the advantage of the nanostate catalyst, the usual La2CuO4 bulk powder was also prepared and studied for comparison.  相似文献   

5.
Nanosized-Ta2O5 powder photocatalyst was successfully synthesized by using sol-gel method via TaCl5 butanol solution as a precursor. Ta2O5 species can be formed under 500 °C via the decomposition of the precursor. The crystalline phase of Ta2O5 powder photocatalyst can be obtained after being calcined above 600 °C for 4 h. The crystal size and particle size of Ta2O5 powder photocatalyst was about 50 nm. A good photocatalytic performance for the degradation of gaseous formaldehyde was obtained for the nanosized-Ta2O5 powder. The Ta2O5 powder formed at 700 °C for 4 h and at 650 °C for 12 h showed the best performance. The calcination temperature and time play an important role in the crystallization and photocatalytical performance of nanosized-Ta2O5 powder.  相似文献   

6.
Mn/Fe mixed oxide solids doped with Al2O3 (0.32-1.27 wt.%) were prepared by impregnation of manganese nitrate with finely powdered ferric oxide, then treated with different amounts of aluminum nitrate. The obtained samples were calcined in air at 700-1000 °C for 6 h. The specific surface area (SBET) and the catalytic activity of pure and doped precalcined at 700-1000 °C have been measured by using N2 adsorption isotherms and CO oxidation by O2. The structure and the phase changes were characterized by DTA and XRD techniques. The obtained results revealed that Mn2O3 interacted readily with Fe2O3 to produce well-crystallized manganese ferrite (MnFe2O4) at temperatures of 800 °C and above. The degree of propagation of this reaction increased by Al2O3-doping and also by increasing the heating temperature. The treatment with 1.27 wt.% Al2O3 followed by heating at 1000 °C resulted in complete conversion of Mn/Fe oxides into the corresponding ferrite phase. The catalytic activity and SBET of pure and doped solids were found to decrease, by increasing both the calcination temperature and the amount of Al2O3 added, due to the enhanced formation of MnFe2O4 phase which is less reactive than the free oxides (Mn2O3 and Fe2O3). The activation energy of formation (ΔE) of MnFe2O4 was determined for pure and doped solids. The promotion effect of aluminum in formation of MnFe2O4 was attributed to an effective increase in the mobility of reacting cations.  相似文献   

7.
The La2CuO4 crystal nanofibers were prepared by using single-walled carbon nanotubes as templates under mild hydrothermal conditions. The steam reforming of methanol (SRM) to CO2 and H2 over such nanofiber catalysts was studied. At the low temperature of 150 °C and steam/methanol=1.3, methanol was completely (100%, 13.8 g/h g catalyst) converted to hydrogen and CO2 without the generation of CO. Within the 60 h catalyst lifespan test, methanol conversion was maintained at 98.6% (13.6 g/h g catalyst) and with 100% CO2 selectivity. In the meantime, for distinguishing the advantage of nanoscale catalyst, the La2CuO4 bulk powder was prepared and tested for the SRM reaction for comparison. Compared with the La2CuO4 nanofiber, the bulk powder La2CuO4 showed worse catalytic activity for the SRM reaction. The 100% conversion of methanol was achieved at the temperature of 400 °C, with the products being H2 and CO2 together with CO. The catalytic activity in terms of methanol conversion dropped to 88.7% (12.2 g/h g catalyst) in 60 h. The reduction temperature for nanofiber La2CuO4 was much lower than that for the La2CuO4 bulk powder. The nanofibers were of higher specific surface area (105.0 m2/g), metal copper area and copper dispersion. The in situ FTIR and EPR experiments were employed to study the catalysts and catalytic process. In the nanofiber catalyst, there were oxygen vacancies. H2-reduction resulted in the generation of trapped electrons [e] on the vacancy sites. Over the nanofiber catalyst, the intermediate H2CO/HCO was stable and was reformed to CO2 and H2 by steam rather than being decomposed directly to CO and H2. Over the bulk counterpart, apart from the direct decomposition of H2CO/HCO to CO and H2, the intermediate H2COO might go through two decomposition ways: H2COO=CO+H2O and H2COO=CO2+H2.  相似文献   

8.
Thin PVA/manganese acetate composite fibers were prepared by using sol-gel processing and electrospinning technique. After calcinations of the above precursor fibers, Mn2O3 and Mn3O4 nanofibers with a diameter of 50-200 nm could be successfully obtained. The fibers were characterized by TG-DTA, Scanning electron microscopy, FT-IR, WAXD, respectively. The results showed that the crystalline phase and morphology of nanofibers were largely influenced by the calcination temperature.  相似文献   

9.
We proposed an electrochemical DNA sensor by using peroxidase-like magnetic ZnFe2O4–graphene quantum dots (ZnFe2O4/GQDs) nanohybrid as a mimic enzymatic label. Aminated graphene and Pd nanowires were successively modified on glassy carbon electrode, which improved the electronic transfer rate as well as increased the amount of immobilized capture ssDNA (S1). The nanohybrid ZnFe2O4/GQDs was prepared by assembling the GQDs on the surface of ZnFe2O4 through a photo-Fenton reaction, which was not only used as a mimic enzyme but also as a carrier to label complementary ssDNA (S3). By synergistically integrating highly catalytically activity of nano-sized GQDs and ZnFe2O4, the nanohybrid possessed highly-efficient peroxidase-like catalytic activity which could produce a large current toward the reduction of H2O2 for signal amplification. Thionine was used as an excellent electron mediator. Compared with traditional enzyme labels, the mimic enzyme ZnFe2O4/GQDs exhibited many advantages such as environment friendly and better stability. Under the optimal conditions, the approach provided a wide linear range from 10−16 to 5 × 10−9 M and low detection limit of 6.2 × 10−17 M. The remarkable high catalytic capability could allow the nanohybrid to replace conventional peroxidase-based assay systems. The new, robust and convenient assay systems can be widely utilized for the identification of other target molecules.  相似文献   

10.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

11.
Fe-Co/CoFe2O4 nanocomposite and CoFe2O4 nanopowders were prepared by the hydrothermal method. The structure of magnetic powders were characterized by X-ray diffraction diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermal gravity analysis (TGA) and differential thermal analysis (DTA) analysis, X-ray photoelectron spectrometry (XPS), and Fourier transform infrared spectra (FTIR) techniques, while magnetic properties were determined by using a vibrating sample magnetometer (VSM) at room temperature. The effects of hydrothermal reaction conditions on magnetic properties were also discussed in details. The values of saturation magnetization (Ms) and coercive fore (Hc) for Fe-Co/CoFe2O4 nanocomposite are 113 emu/g and 1.4 kOe, respectively. Furthermore, CoFe2O4 ferrite with a single-domain critical size of 70 nm was fabricated by controlling the hydrothermal reaction conditions carefully, which presents high coercive force (ca. 4.6 kOe) and high squareness ratio (ca. 0.65). One interesting thing is Ms value of CoFe2O4 ferrite with a diameter of 40 nm is 86 emu/g which is comparable to that of the bulk counterpart.  相似文献   

12.
Polyvinyl amine coated Fe3O4@SiO2 composite microspheres with a core-shell structure were prepared and employed as a magnetic catalyst for Knoevenagel condensation under mild conditions. The catalyst can be readily recovered using a magnet and reused several times without loss in activity or selectivity. The performance of the magnetic base catalyst was compared with that of polyvinyl amine functionalized mesoporous SBA-15, which showed that the magnetic nanoparticles gave improved reaction rate and yield.  相似文献   

13.
This work describes the synthesis and magnetic-optical properties of Fe3O4 nanowires decorated by CdTe quantum dots. The composite nanowires with a length of 1 μm and an average diameter of 23±3 nm were prepared in a high yield through the preferential growth of Fe3O4 on CdTe quantum dots using ethylenediamine as template. Their growth mechanism was discussed based on the results of control experiments. Studies on the optical and magnetic properties of the composite nanowires reveal that they assume not only yellow-green emission feature but also room temperature ferromagnetism.  相似文献   

14.
A simple procedure has been used for preparation of modified glassy carbon electrode with carbon nanotubes and copper complex. Copper complex [Cu(bpy)2]Br2 was immobilized onto glassy carbon (GC) electrode modified with silicomolybdate, α-SiMo12O404− and single walled carbon nanotubes (SWCNTs). Copper complex and silicomolybdate irreversibly and strongly adsorbed onto GC electrode modified with CNTs. Electrostatic interactions between polyoxometalates (POMs) anions and Cu-complex, cations mentioned as an effective method for fabrication of three-dimensional structures. The modified electrode shows three reversible redox couples for polyoxometalate and one redox couple for Cu-complex at wide range of pH values. The electrochemical behavior, stability and electron transfer kinetics of the adsorbed redox couples were investigated using cyclic voltammetry. Due to electrostatic interaction, copper complex immobilized onto GC/CNTs/α-SiMo12O404− electrode shows more stable voltammetric response compared to GC/CNTs/Cu-complex modified electrode. In comparison to GC/CNTs/Cu-complex the GC/CNTs/α-SiMo12O404− modified electrodes shows excellent electrocatalytic activity toward reduction H2O2 and BrO3 at more reduced overpotential. The catalytic rate constants for catalytic reduction hydrogen peroxide and bromate were 4.5(±0.2) × 103 M−1 s−1 and 3.0(±0.10) × 103 M−1 s−1, respectively. The hydrodynamic amperommetry technique at 0.08 V was used for detection of nanomolar concentration of hydrogen peroxide and bromate. Detection limit, sensitivity and linear concentration range proposed sensor for bromate and hydrogen peroxide detection were 1.1 nM and 6.7 nA nM−1, 10 nM-20 μM, 1 nM, 5.5 nA nM−1 and 10 nM-18 μM, respectively.  相似文献   

15.
Sphere- and pod-like α-Fe2O3 particles have been selectively synthesized using NH3·H2O and NaOH solution to adjust the pH value of the designed synthetic system, respectively. The sphere-like α-Fe2O3 particles with diameter about 25 nm on average were encapsulated into carbon shells to fabricate a novel core-shell composite (α-Fe2O3@C) through the coating experiments. The catalytic performance of the products on the thermal decomposition of ammonium perchlorate (AP) was investigated by thermal gravimetric analyzer (TG) and differential thermal analysis (DTA). The thermal decomposition temperatures of AP in the presence of pod-like α-Fe2O3, sphere-like α-Fe2O3 and α-Fe2O3@C are reduced by 72, 81 and 109 °C, respectively, which show that α-Fe2O3@C core-shell composites have higher catalytic activity than that of α-Fe2O3.  相似文献   

16.
BiFeO3 magnetic nanoparticles (BFO MNPs) are used as a catalyst to develop an ultrasensitive method for the determination of H2O2. It is found that BFO MNPs can catalyze the decomposition of H2O2 to produce OH radicals, which in turn oxidize the weakly fluorescent benzoic acid to a strongly fluorescent hydroxylated product with a maximum emission at 405 nm. This makes it possible to sensitively quantify traces of H2O2. Under optimized conditions, the fluorescence intensity is observed to be well linearly correlated with H2O2 concentration from 2.0 × 10−8 to 2.0 × 10−5 mol L−1 with a detection limit of 4.5 × 10−9 mol L−1 (S/N = 3). In addition, a selective method for glucose determination is developed by using both glucose oxidase and BFO MNPs, which has a linear range for glucose concentration from 1.0 × 10−6 to 1.0 × 10−4 mol L−1 with a detection limit of 5.0 × 10−7 mol L−1. These new methods have been successfully applied for the determination of H2O2 in rainwater and glucose in human serum samples.  相似文献   

17.
Qian L  Yang X 《Talanta》2006,68(3):721-727
A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: −0.2 V) was from 1.67 × 10−5 to 7.40 × 10−4 M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.  相似文献   

18.
Taking advantage of the fact that TiO2 additions to 8YSZ cause not only the formation of a titania-doped YSZ solid solution but also a titania-doped YTZP solid solution, composite materials based on both solutions were prepared by solid state reaction. In particular, additions of 15 mol% of TiO2 give rise to composite materials constituted by 0.51 mol fraction titania-doped yttria tetragonal zirconia polycrystalline and 0.49 mol fraction titania-doped yttria stabilized zirconia (0.51TiYTZP/0.49TiYSZ). Furthermore, Y2(Ti1−yZry)2O7 pyrochlore is present as an impurity phase with y close to 1, according to FT-Raman results. Lower and higher additions of titania than that of 15 mol%, i.e., x=0, 5, 10, 20, 25 and 30 mol% were considered to study the evolution of 8YSZ phase as a function of the TiO2 content. Furthermore, zirconium titanate phase (ZrTiO4) is detected when the titania content is equal or higher than 20 mol% and this phase admits Y2O3 in solid solution according to FE-SEM-EDX.The 0.51TiYTZP/0.49TiYSZ duplex material was selected in this study to establish the mechanism of its electronic conduction under low oxygen partial pressures. In the pO2 range from 0.21 to 10−7.5 atm. the conductivity is predominantly ionic and constant over the range and its value is 0.01 S/cm. The ionic plus electronic conductivity is 0.02 S/cm at 1000 °C and 10−12.3 atm. Furthermore, the onset of electronic conductivity under reducing conditions exhibits a −1/4 pO2 dependence. Therefore, it is concluded that the n-type electronic conduction in the duplex material can be due to a small polaron-hopping between Ti3+ and Ti4+.  相似文献   

19.
Effect of surface fluorination and conductive additives on the charge/discharge behavior of lithium titanate (Li4/3Ti5/3O4) has been investigated using F2 gas and vapor grown carbon fiber (VGCF). Surface fluorination of Li4/3Ti5/3O4 was made using F2 gas (3 × 104 Pa) at 25-150 °C for 2 min. Charge capacities of Li4/3Ti5/3O4 samples fluorinated at 70 °C and 100 °C were larger than those for original sample at high current densities of 300 and 600 mA/g. Optimum fluorination temperatures of Li4/3Ti5/3O4 were 70 °C and 100 °C. Fibrous VGCF with a large surface area (17.7 m2/g) increased the utilization of available capacity of Li4/3Ti5/3O4 probably because it provided the better electrical contact than acetylene black (AB) between Li4/3Ti5/3O4 particles and nickel current collector.  相似文献   

20.
A phenol biosensor was developed based on the immobilization of tyrosinase on the surface of modified magnetic MgFe2O4 nanoparticles. The tyrosinase was first covalently immobilized to core-shell (MgFe2O4-SiO2) magnetic nanoparticles, which were modified with amino group on its surface. The resulting magnetic bio-nanoparticles were attached to the surface of carbon paste electrode (CPE) with the help of a permanent magnet. The immobilization matrix provided a good microenvironment for the retaining of the bioactivity of tyrosinase. Phenol was determined by the direct reduction of biocatalytically generated quinone species at −150 mV versus SCE. The resulting phenol biosensor could reach 95% of steady-state current within 20 s and exhibited a high sensitivity of 54.2 μA/mM, which resulted from the high tyrosinase loading of the immobilization matrix. The linear range for phenol determination was from 1 × 10−6 to 2.5 × 10−4 M with a detection limit of 6.0 × 10−7 M obtained at a signal-to-noise ratio of 3. The stability and the application of the biosensor were also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号