首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

2.
Crystal structure of BaMg2Si2O7 was determined and refined by a combined powder X-ray and neutron Rietveld method (monoclinic, C2/c, no. 15, Z=8, a=7.24553(8) Å, b=12.71376(14) Å, c=13.74813(15) Å, β=90.2107(8)°, V=1266.44(2) Å3; Rp/Rwp=3.38%/4.77%). The structure contains a single crystallographic type of Ba atom coordinated to eight O atoms with C1 (1) site symmetry. Under 325-nm excitation Ba0.98Eu0.02Mg2Si2O7 exhibits an asymmetric emission band around 402 nm. The asymmetric shape of the emission band is likely associated with a small electron-phonon coupling in BaMg2Si2O7. The integrated intensity of the emission band was observed to remain constant over the temperature range 4.2-300 K.  相似文献   

3.
The germanate compound Cu2Sc2Ge4O13 has been synthesized by solid-state ceramic sintering techniques between 1173 and 1423 K. The structure was solved from single-crystal data by Patterson methods. The title compound is monoclinic, a=12.336(2) Å, b=8.7034(9) Å, c=4.8883(8) Å, β=95.74(2), space group P21/m, Z=4. The compound is isotypic with Cu2Fe2Ge4O13, described very recently. The structure consists of crankshaft-like chains of edge-sharing ScO6 octahedra running parallel to the crystallographic b-axis. These chains are linked laterally by [Cu2O6]8− dimers forming a sheet of metal-oxygen-polyhedra within the a-b plane. These sheets are separated along the c-axis by [Ge4O13]10− units. Cooling to 100 K does not alter the crystallographic symmetry of Cu2Sc2Ge4O13. While the b, c lattice parameter and the unit cell volume show a positive linear thermal expansion (α=6.4(2)×10−6, 5.0(2)×10−6 and 8.3(2)×10−6 K−1 respectively), the a lattice parameter exhibits a negative thermal expansion (α=−3.0(2)×10−6 K−1) for the complete T-range investigated. This negative thermal expansion of a is mainly due to the increase of the Cu-Cu interatomic distance, which is along the a-axis. Average bond lengths remain almost constant between 100 and 298 K, whereas individual ones partly show both significant shortages and lengthening.  相似文献   

4.
Crystal structure of a series of mixed-metal oxides, T2Mo3O8 (T=Mg, Co, Zn and Mn; P63mc; a=5.7628(1) Å, c=9.8770(3) Å for Mg2Mo3O8; a=5.7693(3) Å, c=9.9070(7) Å for Co2Mo3O8; a=5.7835(2) Å, c=9.8996(5) Å for Zn2Mo3O8; a=5.8003(2) Å, c=10.2425(5) Å for Mn2Mo3O8) was investigated by X-ray diffraction on single crystals. Structural analysis, magnetization measurements, X-ray photoemission spectroscopy and cyclic voltammetry showed that the Mn ions at the tetrahedral and octahedral sites in Mn2Mo3O8 adopt different valences of +2 and 2+δ (δ>0), respectively. The formal valence of the Mo3 in Mn2Mo3O8 is 12−δ to retain electric neutrality of the compound. In contrast, the T ions and Mo3 in T2Mo3O8 (T=Mg, Co and Zn) adopt the valences of +2 and +12, respectively.  相似文献   

5.
Over 100 samples were prepared as (Ga,In)4(Sn,Ti)n−4O2n−2, n=6, 7, and 9 by solid-state reaction at 1400 °C and characterized by X-ray diffraction. Nominally phase-pure beta-gallia-rutile intergrowths were observed in samples prepared with n=9 (0.17?x?0.35 and 0?y?0.4) as well as in a few samples prepared with n=6 and 7. Rietveld analysis of neutron time-of-flight powder diffraction data were conducted for three phase-pure samples. The n=6 phase Ga3.24In0.76Sn1.6Ti0.4O10 is monoclinic, P2/m, with Z=2 and a=11.5934(3) Å, b=3.12529(9) Å, c=10.6549(3) Å, β=99.146(1)°. The n=7 phase Ga3.24In0.76Sn2.4Ti0.6O12 is monoclinic, C2/m, with Z=2 and a=14.2644(1) Å, b=3.12751(2) Å, c=10.6251(8) Å, β=108.405(1)°. The n=9 phase Ga3.16In0.84Sn4TiO16 is monoclinic, C2/m, with Z=2 a=18.1754(2) Å, b=3.13388(3) Å, c=10.60671(9) Å, β=102.657(1)°. All of the structures are similar in that they possess distorted hexagonal tunnels parallel to the [010] vector.  相似文献   

6.
Bi3Fe0.5Nb1.5O9 was synthesized using conventional solid state techniques and its crystal structure was refined by the Rietveld method using neutron powder diffraction data. The oxide adopts an Aurivillius-type structure with non-centrosymmetric space group symmetry A21am (a=5.47016(9) Å, b=5.43492(9) Å, c=25.4232(4) Å), analogous to other Aurivillius compounds that exhibit ferroelectricity. The Fe and Nb cations are disordered on the same crystallographic site. The [(Fe,Nb)O6] octahedra exhibit tilting and distortion to accommodate the bonding requirements of the Bi cations located in the perovskite double layers. Magnetic measurements indicate non-Curie-Weiss-type paramagnetic behavior from 300 to 6 K. Measurements of dielectric properties and electrical resistivity exhibited changes near 250-260 °C and are suggestive of a ferroelectric transition.  相似文献   

7.
A new compound, Li4CaB2O6, has been synthesized by solid-state reaction and its structure has been determined from powder X-ray diffraction data by direct methods. The refinement was carried out using the Rietveld methods and the final refinement converged with Rp=10.4%, Rwp=14.2%, Rexp=4.97%. This compound belongs to the orthorhombic space group Pnnm, with lattice parameters a=9.24036(9) Å, b=8.09482(7) Å, and c=3.48162(4) Å. Fundamental building units are isolated [BO3]3− anionic groups, which are all parallel to the a-b plane stacked along the c-axis. The Ca atoms are six-coordinated by the O atoms to form octahedral coordination polyhedra, which are joined together through edges along the c-axis, forming infinitely long three-dimensional chains. The Li atoms have a four-fold and a five-fold coordination with O atoms that lead to complex Li-O-Li chains that also extend along the c-axis. The infrared spectrum of Li4CaB2O6 was also studied, which is consistent with the crystallographic study.  相似文献   

8.
Crystal structure and anisotropy of the thermal expansion of single crystals of La1−xSrxGa1−2xMg2xO3−y (x=0.05 and 0.1) were measured in the temperature range 300-1270 K. High-resolution X-ray powder diffraction data obtained by synchrotron experiments have been used to determine the crystal structure and thermal expansion. The room temperature structure of the crystal with x=0.05 was found to be orthorhombic (Imma, Z=4, a=7.79423(3) Å, b=5.49896(2) Å, c=5.53806(2) Å), whereas the symmetry of the x=0.1 crystal is monoclinic (I2/a, Z=4, a=7.82129(5) Å, b=5.54361(3) Å, c=5.51654(4) Å, β=90.040(1)°). The conductivity in two orthogonal directions of the crystals has been studied. Both, the conductivity and the structural data indicate three phase transitions in La0.95Sr0.05Ga0.9Mg0.1O2.92 at 520-570 K (Imma-I2/a), 770 K (I2/a-R3c) and at 870 K (R3c-R-3c), respectively. Two transitions at 770 K (I2/a-R3c) and in the range 870-970 K (R3c-R-3c) occur in La0.9Sr0.1Ga0.8Mg0.2O2.85.  相似文献   

9.
A new 1:2 ordered perovskite La(Li1/3Ti2/3)O3 has been synthesized via solid-state techniques. At temperature >1185°C, Li and Ti are randomly distributed on the B-sites and the X-ray powder patterns can be indexed in a tilted (bbc+) Pbnm orthorhombic cell (a=ac√2=5.545 Å, b=ac√2=5.561 Å, c=2ac=7.835 Å). However, for T?1175°C, a 1:2 layered ordering of Li and Ti along 〈111〉c yields a structure with a P21/c monoclinic cell with a=ac√6=9.604 Å, b=ac√2=5.552 Å, c=ac3√2=16.661 Å, β=125.12°. While this type of order is well known in the A2+(B2+1/3B5+2/3)O3 family of niobates and tantalates, La(Li1/3Ti2/3)O3 is the first example of a titanate perovskite with a 1:2 ordering of cations on the B-sites.  相似文献   

10.
The crystal structure of Bi0.7Yb1.3WO6 (a representative of the isomorphous series Bi2−xLnxWO6; 0.3<x<1.3, for most lanthanides) has been determined. Contrary to previous suggestions, this structure type (space group A2; a=8.1070(3) Å, b=3.7048(2) Å, c=15.8379(8) Å, β=103.548(4)°) contains layers of stoichiometry WO4, containing WO6 octahedra sharing both edges and corners. These layers alternate with fluorite-like (Bi/Yb)2O2 sheets; this is a novel and unexpected arrangement and contrasts dramatically with the purely corner-sharing octahedral WO4-layer in the parent Aurivillius phase Bi2WO6.  相似文献   

11.
Hydrothermal synthesis in the K-Mo oxide system was investigated as a function of the pH of the reaction medium. Four compounds were formed, including two K2Mo4O13 phases. One is a new low-temperature polymorph, which crystallizes in the orthorhombic, space group Pbca, with Z=8 and unit cell dimensions a=7.544(1) Å, b=15.394(2) Å, c=18.568(3) Å. The other is the known triclinic K2Mo4O13, whose structure was re-determined from single crystal data; its cell parameters were determined as a=7.976(2) Å, b=8.345(2) Å, c=10.017(2) Å, α=107.104(3)°, β=102.885(3)°, γ=109.760(3)°, which are the standard settings of the crystal lattice. The orthorhombic phase converts endothermically into triclinic phase at ca. 730 K with a heat of transition of 8.31 kJ/mol.  相似文献   

12.
The investigation of the AgNbO3-Nb2O5 system is carried out using solid-state routes. This investigation allows to confirm the existence of four compounds with structure related to the Na-based homologous. A new form of AgNb3O8 is evidenced and its structure is determined on the basis of single-crystal X-ray diffraction investigations. This compound crystallizes in the orthorhombic system (SG Pbam) with cell parameters a=12.453(4) Å; b=12.416(1) Å; c=3.9700(4) Å. It presents a TTB type host network in which triangular tunnels remain empty, square ones are fully filled with Ag+ and pentagonal ones show mixed occupancy with Ag+ and [NbO]3+ entities. Crystal-chemistry investigations show that despite a complex and more or less disordered structure, no evidence for solid solution domain is observed.  相似文献   

13.
The quaternary alkali-metal gallium selenostannates, Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na2−xGa2−xSn1+xSe6 crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) Å, b=7.594(2) Å, c=13.842(3) Å, β=118.730(4)°, V=1226.7(5) Å3. α-KGaSnSe4 crystallizes in the tetragonal space group I4/mcm with a=8.186(5) Å and c=6.403(5) Å, V=429.1(5) Å3. β-KGaSnSe4 crystallizes in the space group P21/c with cell constants a=7.490(2) Å, b=12.578(3) Å, c=18.306(5) Å, β=98.653(5)°, V=1705.0(8) Å3. The unit cell of isostructural RbGaSnSe4 is a=7.567(2) Å, b=12.656(3) Å, c=18.277(4) Å, β=95.924(4)°, V=1741.1(7) Å3. CsGaSnSe4 crystallizes in the orthorhombic space group Pmcn with a=7.679(2) Å, b=12.655(3) Å, c=18.278(5) Å, V=1776.1(8) Å3. The structure of Na2−xGa2−xSn1+xSe6 consists of a polar three-dimensional network of trimeric (Sn,Ga)3Se9 units with Na atoms located in tunnels. The AGaSnSe4 possess layered structures. The compounds show nearly the same Raman spectral features, except for Na2−xGa2−xSn1+xSe6. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na2−xGa2−xSn1+xSe6 to 1.97 eV in CsGaSnSe4. Cooling of the melts of KGaSnSe4 and RbGaSnSe4 produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called γ-form (BaGa2S4-type) of these compounds.  相似文献   

14.
X-ray single-crystal diffraction, high-temperature powder diffraction and differential thermal analysis at ambient and high pressure have been employed to study the crystal structure and phase transitions of guanidinium trichlorostannate, C(NH2)3SnCl3. At 295 K the crystal structure is orthorhombic, space group Pbca, Z=8, a=7.7506(2) Å, b=12.0958(4) Å and c=17.8049(6) Å, solved from single-crystal data. It is perovskite-like with distorted corner-linked SnCl6 octahedra and with ordered guanidinium cations in the distorted cuboctahedral voids. At 400 K the structure shows a first-order order-disorder phase transition. The space group is changed to Pnma with Z=4, a=12.1552(2) Å, b=8.8590(2) Å and c=8.0175(1) Å, solved from powder diffraction data and showing disordering of the guanidinium cations. At 419 K, the structure shows yet another first-order order-disorder transformation with disordering of the SnCl3 part. The space group symmetry is maintained as Pnma, with a=12.1786(2) Å, b=8.8642(2) Å and c=8.0821(2) Å. The thermodynamic parameters of these transitions and the p-T phase diagram have been determined and described.  相似文献   

15.
Investigations on phase relationships and crystal structures have been conducted on several ternary rare-earth titanium antimonide systems. The isothermal cross-sections of the ternary RE-Ti-Sb systems containing a representative early (RE=La) and late rare-earth element (RE=Er) have been constructed at 800 °C. In the La-Ti-Sb system, the previously known compound La3TiSb5 was confirmed and the new compound La2Ti7Sb12 (own type, Cmmm, Z=2, a=10.5446(10) Å, b=20.768(2) Å, and c=4.4344(4) Å) was discovered. In the Er-Ti-Sb system, no ternary compounds were found. The structure of La2Ti7Sb12 consists of a complex arrangement of TiSb6 octahedra and disordered fragments of homoatomic Sb assemblies, generating a three-dimensional framework in which La atoms reside. Other early rare-earth elements (RE=Ce, Pr, Nd) can be substituted in this structure type. Attempts to prepare crystals in these systems through use of a tin flux resulted in the discovery of a new Sn-containing pseudoternary phase RETi3(SnxSb1−x)4 for RE=Nd, Sm (own type, Fmmm, Z=8; a=5.7806(4) Å, b=10.0846(7) Å, and c=24.2260(16) Å for NdTi3(Sn0.1Sb0.9)4; a=5.7590(4) Å, b=10.0686(6) Å, and c=24.1167(14) Å for SmTi3(Sn0.1Sb0.9)4). Its structure consists of double-layer slabs of Ti-centred octahedra stacked alternately with nets of the RE atoms; the Ti atoms are arranged in kagome nets.  相似文献   

16.
Single crystals of Ca3CuRhO6, Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 were synthesized by high temperature flux growth in molten K2CO3 and structurally characterized by single crystal X-ray diffraction. While Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 crystallize with trigonal (rhombohedral) symmetry in the space group , Z=6: Ca3Co1.34Rh0.66O6a=9.161(1) Å, c=10.601(2) Å; Ca3FeRhO6a=9.1884(3) Å, c=10.7750(4) Å; Ca3CuRhO6 adopts a monoclinic distortion of the K4CdCl6 structure in the space group C2/c, Z=4: a=9.004(2) Å, b=9.218(2) Å, c=6.453(1) Å, β=91.672(5). All crystals of Ca3CuRhO6 examined were twinned by pseudo-merohedry. Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are structurally related and contain infinite one-dimensional chains of alternating face-sharing RhO6 octahedra and MO6 trigonal prisms. In the monoclinic modification, the copper atoms are displaced from the center of the trigonal prism toward one of the rectangular faces adopting a pseudo-square planar configuration. The magnetic properties of Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are discussed.  相似文献   

17.
Single crystals of K3RESi2O7 (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were grown from a potassium fluoride flux. Two different structure types were found for this series. Silicates containing the larger rare earths, RE=Gd, Tb, Dy, Ho, Er, Tm, Yb crystallize in a structure K3RESi2O7 that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment, while in K3LuSi2O7, containing the smallest of the rare earths, lutetium is found solely in an octahedral coordination environment. The structure of K3LuSi2O7 crystallizes in space group P63/mmc with a=5.71160(10) Å and c=13.8883(6) Å. The structures containing the remaining rare earths crystallize in the space group P63/mcm with the lattice parameters of a=9.9359(2) Å, c=14.4295(4) Å, (K3GdSi2O7); a=9.88730(10) Å, c=14.3856(3) Å, (K3TbSi2O7); a=9.8673(2) Å, c=14.3572(4) Å, (K3DySi2O7); a=9.8408(3) Å, c=14.3206(6) Å, (K3HoSi2O7); a=9.82120(10) Å, c=14.2986(2) Å, (K3ErSi2O7); a=9.80200(10) Å, c=14.2863(4) Å, (K3TmSi2O7); a=9.78190(10) Å, c=14.2401(3) Å, (K3YbSi2O7). The optical properties of the silicates were investigated and K3TbSi2O7 was found to fluoresce in the visible.  相似文献   

18.
The crystal structures of compounds with nominal compositions Bi6FeP2O15+x (I), Bi6NiP2O15+x (II) and Bi6ZnP2O15+x (III) were determined from single-crystal X-ray diffraction data. They are monoclinic, space group I2, Z=2. The lattice parameters for (I) are a=11.2644(7), b=5.4380(3), c=11.1440(5) Å, β=96.154(4)°; for (II) a=11.259(7), b=5.461(4), c=11.109(7) Å, β=96.65(1)°; for (III) a=19.7271(5), b=5.4376(2), c=16.9730(6) Å, β=131.932(1)°. Least squares refinements on F2 converged for (I) to R1=0.0554, wR2=0.1408; for (II) R1=0.0647, wR2=0.1697; for (III) R1=0.0385, wR2=0.1023. The crystals are complexly twinned by 2-fold rotation about , by inversion and by mirror reflection. The structures consist of edge-sharing articulations of OBi4 tetrahedra forming layers in the a-c plane that then continue by edge-sharing parallel to the b-axis. The three-dimensional networks are bridged by Fe and Ni octahedra in (I) and (II) and by Zn trigonal bipyramids in (III) as well as by oxygen atoms of the PO4 moieties. Bi also randomly occupies the octahedral sites. Oxygen vacancies exist in the structures of the three compounds due to required charge balances and they occur in the octahedral coordination polyhedron of the transition metal. In compound (III), no positional disorder in atomic sites is present. The Bi-O coordination polyhedra are trigonal prisms with one, two or three faces capped. Magnetic susceptibility data for compound (I) were obtained between 4.2 and 350 K. Between 4.2 and 250 K it is paramagnetic, μeff=6.1 μB; a magnetic transition occurs above 250 K.  相似文献   

19.
The isotypic oxonitridosilicate halides Ce10[Si10O9N17]Br, Nd10[Si10O9N17]Br and Nd10[Si10O9N17]Cl were obtained by the reaction of the respective lanthanide metals, their oxides and halides with “Si(NH)2” in a radiofrequency furnace at temperatures around 1800 °C, using CsBr, resp. CsCl, as a flux. The crystal structures were determined by single-crystal X-ray diffraction (Pbam, no. 55, Z=2; Ce/Br: a=10.6117(9) Å, b=11.2319(10) Å, c=11.688(8) Å, R1=0.0356; Nd/Br: a=10.523(2) Å, b=11.101(2) Å, c=11.546(2) Å, R1=0.0239; Nd/Cl: a=10.534(2) Å, b=11.109(2) Å, c=11.543(2) Å, R1=0.0253) and represent a new layered structure type. The structure refinements were performed utilizing an O/N-distribution model according to Paulings rules, i.e. nitrogen was positioned on all bridging sites and mixed O/N-occupation was assumed on the terminal sites resulting in charge neutrality of the compounds. The layers consist of condensed [SiN2(O/N)2] and [SiN3(O/N)] tetrahedra of Q2 and Q3 type. The chemical composition of the compounds was derived from chemical analyses for Nd10[Si10O9N17]Br and electron probe micro analyses (EPMA) for all three compounds. The results of IR spectroscopic investigations are reported.  相似文献   

20.
The isostructural alkali thioferrate compounds CsFe2S3, RbFe2S3 and KFe2S3 have been synthesized by reacting Fe and S with their corresponding AFeS2 (A=K, Rb, Cs) precursors. The crystal structures of these and binary compounds of intermediate composition were determined by Rietveld analysis of laboratory powder X-ray diffraction patterns. All of the synthesized compounds adopt the space group Cmcm (#63), Z=4 with: a=9.5193(8) Å, b=11.5826(10) Å, c=5.4820(4) Å for CsFe2S3; a=9.2202(7) Å, b=11.2429(9) Å, c=5.4450(3) Å for RbFe2S3; and a=9.0415(13) Å, b=11.0298(17) Å, c=5.4177(6) Å for KFe2S3. These mixed valence alkali thioferrates show regular changes in cell dimensions, AS10 (A=K, Rb, Cs) polyhedron volumes, polyhedron distortion parameters, and calculated oxidation state of Fe with respect to increasing size of the alkali element cation. The calculated empirical oxidation state of iron varies from +2.618 (CsFe2S3), through +2.666 (RbFe2S3) to +2.77 (KFe2S3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号