首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of magnesium substitution on the magnetic properties of Nd0.7Sr0.3MnO3 have been investigated by neutron powder diffraction and magnetization measurements on polycrystalline samples of composition Nd0.7Sr0.3MnO3, Nd0.6Mg0.1Sr0.3MnO3, Nd0.6Mg0.1Sr0.3Mn0.9Mg0.1O3, and Nd0.6Mg0.1Sr0.3Mn0.8Mg0.2O3. The pristine compound Nd0.7Sr0.3MnO3 is ferromagnetic with a transition temperature occurring at about 210 K. Increasing the Mg-substitution causes weakened ferromagnetic interaction and a great reduction in the magnetic moment of Mn. The Rietveld analyses of the neutron powder diffraction (NPD) data at 1.5 K for the samples with Mg concentration, y=0.0 and 0.1, show ferromagnetic Mn moments of 3.44(4) and 3.14(4) μB, respectively, which order along the [001] direction. Below 20 K the Mn moments of these samples become canted giving an antiferromagnetic component along the [010] direction of about 0.4 μB at 1.5 K. The analyses also show ferromagnetic polarization along [001] of the Nd moments below 50 K, with a magnitude of almost 1 μB at 1.5 K for both samples. In the samples with Mg substitution of 0.2 and 0.3 only short range magnetic order occurs and the magnitude of the ferromagnetic Mn moments is about 1.6 μB at 1.5 K for both samples. Furthermore, the low-temperature NPD patterns show an additional very broad and diffuse feature resulting from short range antiferromagnetic ordering of the Nd moments.  相似文献   

2.
Polycrystalline samples of the layered perovskites La2Sr2MgMnO8 and La2Sr2ZnMnO8 have been studied by X-ray and neutron powder diffraction, electron diffraction and magnetometry. X-ray and neutron powder diffraction indicate that the average structure is that of K2NiF4, with disordering of Mn and (Zn, Mg) cations over the octahedral sites. Electron diffraction data indicate that cation ordering is present over these sites in the xy planes, with the xy ordered planes being stacked in a disordered manner along z. No long-range magnetic ordering is observed in the temperature range 5≤T (K)≤300.  相似文献   

3.
La-doped Sr2CoWO6 double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, λ=1.594 Å). At room temperature, the replacement of Sr2+ by La3+ induces a change of the tetragonal structure, space group I4/m of the undoped Sr2CoWO6 into the distorted monoclinic crystal structure, space group P21/n, Z=2. The structure of La-doped phases contains alternating CoO6 and (Co/W)O6 octahedra, almost fully ordered. On the other hand, the replacement of Sr2+ by La3+ induces a partial replacement of W6+ by Co2+ into the B sites, i.e. Sr2−xLaxCoW1−yCoyO6 (y=x/4) with segregation of SrWO4. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN=24 K independently of the La-substitution.  相似文献   

4.
An intense effort has recently been devoted to studying the interplay between structure, magnetism, and transport in manganese perovskite Ln1−xAxMnO3 (Ln=La, Pr, Nd, Sm; A=Ca, Ba, Sr). As a function of temperature, applied magnetic field, doping, A-site ionic radius 〈rA〉, and A-site size disorder, this system displays a rich phase diagram for both magnetotransport and structural properties. We have investigated the structural, magnetic, and transport properties of (La1−xNdx)0.7Sr0.3MnO3. The crystal structure was examined by X-ray powder diffraction which indicated that all the samples were single phase and revealed a transition from rhombohedral to orthorhombic structure with increasing x. The magnetization and resistivity investigation shows that for all values of x, (La1−xNdx)0.7Sr0.3MnO3 are ferromagnetic-metallic at low temperatures and paramagnetic-semiconductor above the Curie temperature Tc.  相似文献   

5.
The crystal structures of the perovskite manganites SrxCa1−xyNdyMnO3 with y=0.1 or 0.2 have been investigated using synchrotron X-ray powder diffraction. At room temperature the structures change from depending on the cation distribution, the different structures exhibiting different tilts of the MnO6 octahedra. High temperature diffraction measurements demonstrate the presence of, an apparently continuous, isosymmetric I4/mcm to I4/mcm phase transition associated with the removal of long range orbital ordering. Heating the manganites to still higher temperatures results in a continuous transition to the cubic structure. A feature of such transitions is the continuous evolution of the octahedral tilt angle through the I4/mcm to I4/mcm phase transition. The orthorhombic structures do not exhibit orbital ordering and although a first order transition to the tetragonal structure is observed in Sr0.4Ca0.5Nd0.1MnO3, this high temperature tetragonal structure does not exhibit orbital ordering.  相似文献   

6.
The reduced Ruddlesden-Popper phases, Sr3Co2O5+δ with δ=0.91, 0.64 and 0.38, have been prepared in a nitrogen atmosphere. The crystal structures were determined by powder neutron diffraction. Oxygen vacancies are found both in O(3) and O(4) sites but the majority are along one crystallographic axis in the CoO2 plane, inducing an orthorhombic distortion of the normally tetragonal n=2 Ruddelsden-Popper structure. Superstructures due to oxygen ordering are observed by electron microscopy. The magnetic measurements reveal complex behavior with some ferromagnetic interactions present for Sr3Co2O5.91 and Sr3Co2O5.64.  相似文献   

7.
The nuclear and magnetic structures of polycrystalline Sr2MnO3.5 have been determined by the Rietveld analysis of neutron powder diffraction data and electron diffraction techniques. The pure Mn3+ single-layered phase crystallizes in the primitive monoclinic space-group P21/c with lattice constants a=6.8524(3) Å b=10.8131(4) Å c=10.8068(4) Å β=113.247(4)°. The oxygen defects form an ordered superstructure within the perovskite block layers consisting of interconnected MnO5 square pyramids, slightly different from those observed for the defect perovskites SrMnO2.5 and Ca2MnO3.5. Magnetic susceptibility studies show a broad transition at ∼280 K, which is attributed to an overall antiferromagnetic ordering of spins, which leads to doubling of the unit cell along [100]. The magnetic unit cell comprises ferromagnetic clusters of four corner-sharing MnO5 pyramids, which are antiferromagnetically aligned to other similar clusters within the perovskite block layers.  相似文献   

8.
The new mixed oxide having composition close to Ca7Co3Ga5O18 was synthesized from CaCO3, Co3O4 and Ga2O3 at 1150 °C in air and studied by neutron and synchrotron X-ray powder diffraction, selected-area electron diffraction and high-resolution electron microscopy. The structure was refined, using time-of-flight (TOF) neutron powder diffraction data, in space group F432, with and Z=8, to RF=0.7%. It is considerably disordered, with four different tetrahedral sites randomly occupied by Co and Ga atoms at a ratio of 1:2. The tetrahedra form a disordered (Co1/3Ga2/3)O2 3D-framework inside which isolated CoO6 octahedra, surrounded by 8 Ca atoms, are located. The structure is related to the ordered structure of Ca14Al10Zn6O35. Electron diffraction patterns confirmed the symmetry and unit cell and revealed no diffuse scattering. High-resolution electron microscopy images showed the absence of extended structural defects.  相似文献   

9.
The Ho0.5Sr0.5MnO3 perovskite, synthesized in air, has been studied by combining neutron powder and electron diffraction techniques. The Pnma-type structure exhibits a strong tilting of the MnO6 octahedra. This octahedra tilting and microtwinning involve a complex strained structure. No structural transition is observed down to 1.4 K, but short-range A-type antiferromagnetism running over only a few perovskite subcells is evidenced below ≈90 K. The different behavior of this perovskite compared to other Ln0.5Sr0.5MnO3 perovskites is discussed in terms of A-site cationic mismatch.  相似文献   

10.
The effect of SrII-for-BaII isovalent substitution on the magnetic irreversibility field (Hirr) of Cu(Ba1−ySry)2YbCu2O6.95(2) (Cu-1212) sample series (y=0-0.4) is studied to reveal guiding rules for tailoring the intrinsic Hirr characteristics of high-Tc superconductors. It has been assumed that substitution of the larger alkaline-earth cation, BaII, by the smaller, SrII, might improve the Hirr characteristics as a consequence of the decrease in the thickness of nonsuperconductive blocking block (BB). However, results of the present work show that Sr substitution rather depresses the Hirr characteristics of the Cu-1212-phase superconductors even though the thickness of BB decreases. Both the amount of excess oxygen and the overall positive charge are confirmed to remain constant upon the Sr substitution by wet-chemical and X-ray absorption near-edge structure analyses, respectively. However, from neutron diffraction data analysis, it is found that Sr substitution breaks the conductive CuO chains in BB by shifting part of the excess oxygen atoms from the characteristic b-axis lattice site to the a-axis site. This is believed to decrease the concentration of mobile holes in the BB, as supported by the results of TEP measurements. The lower Hirr(T) lines of the Sr-substituted samples may thus be attributed to the lower concentration of mobile holes in BB.  相似文献   

11.
A novel BaCe0.4Zr0.3 Sn0.1Y0.2O3−δ (BSY) electrolyte membrane with thickness of 20 μm was fabricated on NiO-based anode substrate via a one-step all-solid-state method followed by a co-sintering at 1450 °C for 5 h. Chemical stability test demonstrated that BSY electrolyte showed adequate chemical stability against CO2 and H2O at intermediate temperature. Besides, the doping of Sn also enhanced the conductivity in humidified hydrogen. With Nd0.7Sr0.3MnO3−σ cathode and hydrogen fuel, the fuel cell generated maximum output of 320, 185 and 105 mW cm−2 at 700, 650 and 600 °C, respectively. The interfacial resistance of the fuel cell was studied under open circuit conditions and the short-term cell performance also confirmed the stability of BSY electrolyte membrane.  相似文献   

12.
The low-temperature topotactic reduction of La0.33Sr0.67MnO3 with NaH results in the formation of La0.33Sr0.67MnO2.42. A combination of neutron powder and electron diffraction data show that La0.33Sr0.67MnO2.42 adopts a novel anion-vacancy ordered structure with a 6-layer OOTOOT' stacking sequence of the ‘octahedral’ and tetrahedral layers (Pcmb, a=5.5804(1) Å, b=23.4104(7) Å, c=11.2441(3) Å). A significant concentration of anion vacancies at the anion site, which links neighbouring ‘octahedral’ layers means that only 25% of the ‘octahedral’ manganese coordination sites actually have 6-fold MnO6 coordination, the remainder being MnO5 square-based pyramidal sites. The chains of cooperatively twisted apex-linked MnO4 tetrahedra adopt an ordered -L-R-L-R- arrangement within each tetrahedral layer. This is the first published example of a fully refined structure of this type which exhibits such intralayer ordering of the twisted tetrahedral chains. The rationale behind the contrasting structures of La0.33Sr0.67MnO2.42 and other previously reported reduced La1−xSrxMnO3−y phases is discussed.  相似文献   

13.
This paper describes the results of electron microscopy, high-temperature powder neutron diffraction, and impedance spectroscopy studies of brownmillerite-structured Ba2In2O5 and perovskite structured Ba(InxZr1−x)O3−x/2. The ambient temperature structure of Ba2In2O5 is found to adopt Icmm symmetry, with disorder of the tetrahedrally coordinated (In3+) ions of the type observed previously in Sr2Fe2O5. Ba2In2O5 undergoes a ∼6-fold increase in its ionic conductivity over the narrow temperature range from ∼1140 K to ∼1230 K, in broad agreement with previous studies. This transition corresponds to a change from the brownmillerite structure to a cubic perovskite arrangement with disordered anions. Electron microscopy investigations showed the presence of extended defects in all the crystals analyzed. Ba(InxZr1−x)O3−x/2 samples with x=0.1 to 0.9 adopt the cubic perovskite structure, with the lattice parameter increasing with x.  相似文献   

14.
Owing to gold's oxophobicity, its oxide chemistry is rather limited, and elevated oxygen pressures are usually required to prepare ternary and quaternary oxide compounds with gold ions. The Au3+ oxide, La4LiAuO8, is remarkable both because it can be prepared at ambient pressure in air, and because of its unusual stability toward thermal decomposition and reduction. The structure of La4LiAuO8 was established by Pietzuch et al. using single crystal X-ray diffraction [1]. The compound adopts an ordered modification of the Nd2CuO4 structure, containing two-dimensional sheets in which AuO4 square planes are separated from one another by LiO4 square planes. In light of the meager X-ray scattering factors of Li and O, relative to La and Au, we report here a neutron powder diffraction study of La4LiAuO8, definitively confirming the structure. To our knowledge, this is the first reported neutron diffraction study of any stoichiometric oxide compound of gold. X-N maps, which make use of nuclear positions obtained from Rietveld refinement of time-of-flight neutron diffraction data and electron densities obtained from synchrotron X-ray powder diffraction data, point to the highly covalent nature of the Au-O bonding in La4LiAuO8. This is in good agreement with charge densities and Bader charges obtained from full density functional relaxation of the structure.  相似文献   

15.
The structure of a series of new ionic conductors based in lanthanum molybdate (La2Mo2O9) has been investigated using transmission electron microscopy (TEM), high-resolution X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The superstructure 2ac×3ac×4ac of the low temperature α-polymorph relative to the β-polymorph was confirmed by HRTEM imaging and electron diffraction. Furthermore, the effects of partial cation substitution in the La2−xNdxMo2O9 and La2Mo2−yWyO9 series have been also evaluated in the search of new clues to understand the structure and stabilisation of the high temperature and better conductor β-polymorph. The thermal analysis studies show that Nd-substitution does not stabilise completely the β-polymorph at room temperature, although no superstructure ordering was observed by both XRD and HRTEM. On the other hand, W-substitution stabilises the cubic β-polymorph for y>0.25, although, electron diffraction indicates a slight distortion from the cubic symmetry for low W-content. This distortion disappears as the W content increases and the Rietveld refinements gradually render better results.  相似文献   

16.
The effect of Fe doping on the ferromagnetic Nd0.7Pb0.3Mn1−xFexO3 (x=0, 0.025, 0.05, 0.075, 0.1) phases has been studied in order to analyze the double-exchange interaction. The structural and magnetic study has been carried out by neutron powder diffraction and susceptibility measurements between 1.7 and 300 K. The substitution of Fe at the Mn site results in reductions in both the Curie temperature Tc and the magnetic moment per Mn ion without appreciable differences in the crystal structures. All the compounds crystallize in Pnma space group. The thermal evolution of the lattice parameters of the Nd0.7Pb0.3Mn1−xFexO3 (x=0.025, 0.05, 0.075) compounds shows discontinuities in volume and lattice parameters close to the magnetic transition temperature. Increasing amounts of Fe3+ reduces the double exchange interactions and no magnetic contribution for x=0.1 is observed. The magnetic structures of Nd0.7Pb0.3Mn1−xFexO3 (x=0, 0.025, 0.05, 0.075) compounds show that the Nd and Mn ions are ferromagnetically ordered.  相似文献   

17.
Polycrystalline samples of the n=1 Ruddlesden-Popper system Pr3−xSr1+xCrNiO8 have been synthesized over the composition range 0.0<x?1.0 either by the ceramic method or from solution. They have been characterized by an appropriate combination of diffraction methods (X-ray, neutron and electron) and magnetometry (d.c. and a.c.). All compositions having x>0.1 adopt the tetragonal space group I4/mmm; Pr2.9Sr1.1CrNiO8 adopts the orthorhombic space group Fmmm. There is no evidence of Cr/Ni cation ordering in any composition. A maximum in the zero-field cooled magnetic susceptibility is observed at a temperature Tf that decreases with increasing Sr content; 52?Tf (K)?13. The frequency dependence of Tf observed in a.c. susceptibility measurements, together with the analysis of neutron diffraction data, suggests that the atomic magnetic moments in these compositions adopt a spin-glass-like state below Tf.  相似文献   

18.
Granular Ag-added La0.7Ca0.3MnO3 (LCMO) samples were prepared by a sol-gel chemical route. Significant enhancements in Curie temperature (TC), metal−insulator transition (Tp) and magnetoresistance (MR) effects near room temperature are observed in as-obtained samples. 10 wt% addition of Ag in LCMO causes TC shift from 272 to 290 K, Tp boost up for more than 100 K and resistivity decrease by more than 3 orders of magnitude. X-ray diffraction patterns, thermal analysis and energy dispersive analysis of X-rays evidently show the existence of metal silver in LCMO matrices. High-resolution electron microscopy illustrates a well crystallization for LCMO grains in existence of Ag. It is argued that improved grain boundary effect and better crystallization caused by Ag addition are responsible for the enhancements.  相似文献   

19.
Sr2Co2O5 with the perovskite-related brownmillerite structure has been synthesised via quenching, with the orthorhombic unit cell parameters a=5.4639(3) Å, b=15.6486(8) Å and c=5.5667(3) Å based on refinement of neutron powder diffraction data collected at 4 K. Electron microscopy revealed L-R-L-R-intralayer ordering of chain orientations, which require a doubling of the unit cell along the c-parameter, consistent with the assignment of the space group Pcmb. However, on the length scale pertinent to NPD, no long-range order is observed and the disordered space group Imma appears more appropriate. The magnetic structure corresponds to G-type order with a moment of 3.00(4) μB directed along [1 0 0].  相似文献   

20.
The defect chemical relationships in various B-site mixed LaCrO3-based ceramics were investigated by means of high-temperature gravimetry. The nonstoichiometric deviation, δ, in (La0.7Sr0.3)(Cr1−yTiy)O3−δ (y=0.1, 0.2 and 0.3) (LSCT), (La0.75Sr0.25)(Cr0.5Mn0.5)O3−δ (LSCM) and (La0.75Sr0.25)(Cr0.5Fe0.5)O3−δ (LSCF) were measured as a function of oxygen partial pressure, PO2, at temperatures between 973 and 1373 K.The effects of partial replacement of the donor on Cr-sites were examined in LSCT. In LSCM and LSCF, effects of the partial substitution of isovalent transition metals on Cr-sites are discussed. Oxygen nonstoichiometries of various B-site mixed LaCrO3-based ceramics were compared with those of A-site substituted perovskite-type oxides, (La1−xSrx)MO3−δ (where x=0-0.3, M=Cr, Mn and Fe). The partial substitution of the different elements on Cr-sites drastically changed the PO2 and temperature dependence of oxygen vacancy formation in LaCrO3-based ceramics. The defect equilibrium relationships of the localized electron well explained the oxygen vacancy formation in B-site mixed LaCrO3-based ceramics. Oxygen vacancy formation in (La0.7Sr0.3)(Cr1−yTiy)O3−δ (y=0.1 and 0.2) and (La0.7Sr0.3)(Cr0.7Ti0.3)O3−δ was explained by redox reaction of Cr and Ti ions, respectively. The defect equilibrium relationships of LSCM and LSCF were interpreted by redox reaction of Mn ions and Fe ions, respectively. No significant change in valence state of Cr3+ ions in LSCM and LSCF was confirmed under the experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号