首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new series of complexes with the general formula (n-Bu4N)2[M2O2(micro-Q)2(dmit)2] (where M = Mo, W; Q = S, Se; dmit = 1,3-dithiole-2-thione-4,5-dithiolate) have been prepared. Fragmentation of the trinuclear cluster (n-Bu4N)2[Mo3(micro3-S)(micro-S2)3(dmit)3] in the presence of triphenylphosphine (PPh3) gives the dinuclear compound (n-Bu4N)2[Mo2O2(micro-S)2(dmit)2] [(n-Bu4N)2[2]], which is formed via oxidation in air from the intermediate (n-Bu4N)2[Mo3(micro3-S)(micro-S)3(dmit)3] [(n-Bu4N)2[1]] complex. Ligand substitution of the molybdenum sulfur bridged [Mo2O2(micro-S)2(dimethylformamide)6]2+ dimer with the sodium salt of the dmit dithiolate also affords the dianionic compound (n-Bu4N)2[2]. The whole series, (n-Bu4N)2[Mo2O2(micro-Se)2(dmit)2] [(n-Bu4N)2[3]], (n-Bu4N)2[W2O2(micro-S)2(dmit)2] [(n-Bu4N)2[4]], (n-Bu4N)2[W2O2(micro-Se)2(dmit)2] [(n-Bu4N)2[5]], and (n-Bu4N)2[Mo2O2(micro-S)2(dmid)2] [(n-Bu4N)2[6]; dmid = 1,3-dithiole-2-one-4,5-dithiolate], has been synthesized by the excision of the polymeric (Mo3Q7Br4)x phases with PPh3 or 1,2-bis(diphenylphosphanyl)ethane in acetonitrile followed by the dithiolene incorporation and further degradation in air. Direct evidence of the presence of the intermediates with the formula [M3Q4(dmit)3]2- (M = Mo, W; Q = S, Se) has been obtained by electrospray ionization mass spectrometry. The crystal structures of (n-Bu4N)2[1], (PPh4)2[Mo2O2(micro-S)2(dmit)2] [(PPh4)2[2]; PPh4 = tetraphenylphosphonium], (n-Bu4N)2[2], (n-Bu4N)2[4], (PPh4)2[W2O2(micro-Se)2(dmit)2] [(PPh4)2[5]], and (n-Bu4N)2[6] have been determined. A detailed study of the gas-phase behavior for compounds (n-Bu4N)2[2-6] shows an identical fragmentation pathway for the whole family that consists of a partial breaking of the two dithiolene ligands followed by the dissociation of the dinuclear cluster.  相似文献   

2.
Iminoacylation of acetone oxime Me(2)C[double bond, length as m-dash]NOH upon reaction with trans-[PtCl(2)(NCCH(2)CO(2)Me)(2)] and [2 + 3] cycloaddition of acyclic nitrone (-)O(+)N(Me) = C(H)(C(6)H(4)Me-4) to a nitrile ligand in lead to the formation of mono-imine trans-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] [imine-a = NH[double bond, length as m-dash]C(CH(2)CO(2)Me)ON = CMe(2)] and mono-oxadiazoline trans-[PtCl(2)(oxadiazoline-a)(NCCH(2)CO(2)Me)] [oxadiazoline-a = [upper bond 1 start]N[double bond, length as m-dash]C(CH(2)CO(2)Me)ON(Me)C[upper bond 1 end](H)(C(6)H(4)Me-4)] unsymmetric mixed ligand complexes, respectively, as the main products. Reactions of or with acetone oxime , cyclic nitrone (-)O(+)N = CHCH(2)CH(2)C[upper bond 1 end]Me(2) or N,N-diethylhydroxylamine give access, in moderate to good yields, to the unsymmetric mixed ligand oxadiazoline and/or imine complexes trans-[PtCl(2)(oxadiazoline-a)(imine-a)] , trans-[PtCl(2)(oxadiazoline-a)(oxadiazoline-b)] [oxadiazoline-b = [upper bond 1 start]N[double bond, length as m-dash]C(CH(2)CO(2)Me)O[lower bond 1 start]NC[upper bond 1 end](H)CH(2)CH(2)C[lower bond 1 end]Me(2)], trans-[PtCl(2)(imine-a)(imine-b)] [imine-b = NH = C(CH(2)CO(2)Me)ONEt(2)] or trans-[PtCl(2)(imine-a)(oxadiazoline-b)] . The cis mono-imine mixed ligand complex cis-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] is the major product from the reaction of cis-[PtCl(2)(NCCH(2)CO(2)Me)(2)] with the oxime , while the di-imine compound cis-[PtCl(2)(imine-a)(2)] is a minor product. Reaction of cis-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] with N,N-diethylhydroxylamine or the cyclic nitrone affords, in good yields, the unsymmetric mixed ligand complexes cis-[PtCl(2)(imine-a)(imine-b)] or cis-[PtCl(2)(imine-a)(oxadiazoline-b)] , respectively. All these complexes were characterized by elemental analyses, IR and (1)H, (13)C and (195)Pt NMR spectroscopies, and FAB(+)-MS. The X-ray structural analysis of trans-[PtCl(2){NH=C(CH(2)CO(2)Me)ON=CMe(2)}(NCCH(2)CO(2)Me)] is also reported.  相似文献   

3.
A series of crystalline salts based on the [M(dto)2]2- (dto = 1,2-dithiooxalate, M = Ni, Pt, Cu) dianion with hydrogen-bond donor cations have been synthesised following a molecular tectonics approach. The chelating M(dto)[dot dot dot]HN supramolecular synthon has been exploited in a systematic study of its robustness. The effects of competition between hydrogen-bond acceptors, of the shape and functionality of the cations and of varying the metal in the anion are discussed. The preparation and structural characterisation of the new crystalline phases [4,4'-H(2)bipy][Pt(dto)2] (2), [HNC5H4CO2H-4]2[Pt(dto)2] (5), [HNC5H4CO2H-3]2[Pt(dto)2] (6), [HNC5H4CH2CO2H-4]2[Ni(dto)2] (7), [HNC(5)H(4)CH(2)CO(2)H-3]2[Ni(dto)2] (8), [HNC5H4CONH2-4]2[Ni(dto)2] (9), [HNC5H4CHNOH-4]2[Ni(dto)2] (10), [HNC5H4CHNOH-3]2[Ni(dto)2] (11), [4,4'-H2bipip][Ni(dto)2] (12), [H2NC5H9CO2H-4]2[Pt(dto)2] (12), [H2NC5H9CO2H-4]2[Cu(dto)2] (14), [H2NC5H9CO2H-3]2[Ni(dto)2][H2O]2 (15), [H2NC5H9CO2H-3]2[Pt(dto)2][H2O]2 (16), [H2NC5H9CO2H-3]2[Cu(dto)2][H2O]2 (17), [H(Me)NC5H9CO2H-4]2[Ni(dto)2][H2O]2 (18) is reported. The charge-assisted NH[dot dot dot]dto synthon is formed in each of compounds 1-20, and is apparently much more robust than the conventional synthons used (such as the carboxylic acid dimer), which have a much lower rate of occurrence. The NH[dot dot dot]dto synthon may be generalised to 3- and 4-pyridinium species and 3- and 4-piperidinium derivatives. In the latter cases branching of the hydrogen-bond networks through the NH2 groups arises. The robustness of the NH...dto synthon allows structures of the form [NH cation]2[M(dto)2] to be regarded as being formed by the packing of neutral supermolecules. Cases of isomorphism (as in 16-18) and latent polymorphism (e.g. in 4 and 6) are noted.  相似文献   

4.
The rhodium allenylidenes trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = Ph (1), p-Tol (2)] react with NaC(5)H(5) to give the half-sandwich type complexes [(eta(5)-C(5)H(5))Rh[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))] (3, 4). The reaction of 1 with the Grignard reagent CH(2)[double bond]CHMgBr affords the eta(3)-pentatrienyl compound [Rh(eta(3)-CH(2)CHC[double bond]C[double bond]CPh(2))(PiPr(3))(2)] (6), which in the presence of CO rearranges to the eta(1)-pentatrienyl derivative trans-[Rh[eta(1)-C(CH[double bond]CH(2))[double bond]C[double bond]CPh(2)](CO)(PiPr(3))(2)] (7). Treatment of 7 with acetic acid generates the vinylallene CH(2)[double bond]CH[bond]CH[double bond]=C=CPh(2) (8). Compounds 1 and 2 react with HCl to give the five-coordinate allenylrhodium(III) complexes [RhCl(2)[CH[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (10, 11). An unusual [C(3) + C(2) + P] coupling process takes place upon treatment of 1 with terminal alkynes HC[triple bond]CR', leading to the formation of the eta(3)-allylic compounds [RhCl[eta(3)-anti-CH(PiPr(3))C(R')C[double bond]C[double bond]CPh(2)](PiPr(3))] [R' = Ph (12), p-Tol (13), SiMe(3) (14)]. From 12 and RMgBr the corresponding phenyl and vinyl rhodium(I) derivatives 15 and 16 have been obtained. The previously unknown unsaturated ylide iPr(3)PCHC(Ph)[double bond]C[double bond]C[double bond]CPh(2) (17) was generated from 12 and CO. A [C(3) + P] coupling process occurs on treatment of the rhodium allenylidenes 1, 2, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(p-Anis)(2)](PiPr(3))(2)] (20) with either Cl(2) or PhICl(2), affording the ylide-rhodium(III) complexes [RhCl(3)[C(PiPr(3))C[double bond]C(R)R'](PiPr(3))] (21-23). The butatrienerhodium(I) compounds trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (28-31) were prepared from 1, 20, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = CF(3) (26), tBu (27)] and diazomethane; with the exception of 30 (R = CF(3), R' = Ph), they thermally rearrange to the isomers trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (32, 33, and syn/anti-34). The new 1,1-disubstituted butatriene H(2)C[double bond]C[double bond]C[double bond]C(tBu)Ph (35) was generated either from 31 or 34 and CO. The iodo derivatives trans-[RhI(eta(2)-H(2)C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] [R = Ph (38), p-Anis (39)] were obtained by an unusual route from 1 or 20 and CH(3)I in the presence of KI. While the hydrogenation of 1 and 26 leads to the allenerhodium(I) complexes trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (40, 41), the thermolysis of 1 and 20 produces the rhodium(I) hexapentaenes trans-[RhCl(eta(2)-R(2)C[double bond]C[double bond]C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] (44, 45) via C-C coupling. The molecular structures of 3, 7, 12, 21, and 28 have been determined by X-ray crystallography.  相似文献   

5.
The crystal structures of [MnTPP]{Ni[S2C2H(CN)]2} [MnTPP = (meso-tetraphenylporphinato)manganese(III)] and [MnTPP]{Ni[S2C2(CN)2]2} have been determined. These salts possess trans-mu-coordination of S = 1/2 {Ni[S2C2H(CN)]2}*- and {Ni[S(2)C(2)(CN)(2)](2)}*- to Mn(III) and form parallel 1-D coordination polymer chains exhibiting nu(CN) at 2210 and 2200 and 2220 and 2212 cm(-1), respectively. The bis(dithiolato) monoanions are planar and bridge two cations with MnN distances of 2.339(16), and 2.394(3) A, respectively, which are comparable to related MnN distances observed for [MnTPP][TCNE].x(solvates). In addition, [MnTP'P]{Ni[S2C2(CN)2]2} {H2TP'P = meso-tetrakis[3,5-di-tert-butyl-4-hydroxyphenyl)porphyrin] and [MnTP'P(OH2)]{Ni[S2C2(CN)2]2} were prepared. The latter forms isolated paramagnetic ions. The room-temperature values of chiT for 1-D [MnTPP]{Ni[S2C2H(CN)]2}, [MnTPP]{Ni[S2C2(CN)2]2}, and [MnTP'P]{Ni[S2C2(CN)2]2} are 2.55, 3.28, and 2.86 emu K/mol, respectively. Susceptibility (chi) measurements between 2 and 300 K reveal weak antiferromagnetic interactions with theta= -5.9 and -0.2 K for [MnTPP]{Ni[S(2)C(2)H(CN)](2)} and [MnTPP]{Ni[S2C2(CN)2]2}, respectively, and stronger antiferromagnetic coupling of -50 K for [MnTP'P]{Ni[S2C2(CN)2]2} from fits of chi(T) to the Curie-Weiss law. The 1-D intrachain coupling, J(intra), of [MnTPP]{Ni[S2C2H(CN)]2} and [MnTPP]{Ni[S2C2(CN)2]2} was determined from modeling chiT(T) by the Seiden expression (H = -2JSi.Sj) with J/kB = -8.00 K (-5.55 cm(-1); -0.65 meV) for [MnTPP]{Ni[S2C2H(CN)]2}, J/kB = -3.00 K (-2.08 cm(-1); -0.25 meV) for [MnTP'P]{Ni[S2C2(CN)2]2}, and J/kB = -122 K (-85 cm(-1)) for [MnTP'P]{Ni[S2C2(CN)2]2}. These observed negative J(intra)/kB values are indicative of antiferromagnetic coupling. These materials order as ferrimagnets at 5.5, 2.3, and 8.0 K, for [MnTPP]{Ni[S2C2H(CN)]2}, [MnTPP]{Ni[S2C2(CN)2]2}, and [MnTP'P]{Ni[S2C2(CN)2]2}, respectively, based upon the temperature at which maximum in the 10 Hz chi'(T) data occurs. [MnTP'P]{Ni[S2C2(CN)2]2} has a coercivity of 17,700 Oe and remanent magnetizations of 7250 emu Oe/mol at 2 K and 17 Oe and 850 emu Oe/mol at 5 K; hence, upon cooling it goes from being a soft magnet to being a very hard magnet.  相似文献   

6.
A straightforward method for the synthesis of enantiomerically pure bis(valine)metallocenes is presented. Derivatives of lithium cyclopentadienylvaline 1a, b were obtained by addition of the (R)- or (S)-Sch?llkopf reagents to 6,6-dimethylfulvene as single enantiomers and gave with FeCl2 or [RuCl2(dmso)4] the chiral metallocenes [Fe[C5H4-CMe2-[C4H2N2(OMe)2iPr]]2] (2a, b) and [Ru[C5H4-CMe2-[C4H2N2(OMe)2iPr]]2] (3a, b). Complex 2b was hydrolyzed to the ferrocenylene-bis(valine-methylester) [[Fe[C5H4-CMe2-CH(NH3+)COOMe]2]2+(Cl-)2] (7) without racemization. Complex 7 could be used as ligand and was treated with [[Cp*IrCl2]2] to afford [Fe[C5H4-CMe2-CH(COOMe)(NH2-IrCp*Cl2)]2] (10). The reactions of 1 with CoCl2, [Re(CO)5Br], [[(cod)RhCl2]2] (cod= 1,5-cyclooctadiene) or [Cp*MCl3] (M= Ti, Zr) gave the cyclopentadienyl complexes [[Co[C5H4-CMe2-[C4H2N2(OMe)2iPr]]2]+ I-] (11) and [Re[C5H4-CMe2-[C4H2N2(OMe)2iPr]](CO)3] (13), [(C8H12)Rh[C5H4-CMe2-[C4H2N2(OMe)2(iPr)]]] (14). [[Rh[C5H4-CMe2-[C4H2N2(OMe)2(iPr)]]I]2(mu-I)2] (15), [Cp*Cl2Ti-[C5H4-CMe2-[C4H2N2(OMe)2(iPr)]]] (16), and [Cp*Cl2Zr[C5H4-CMe2-[C4H2N2(OMe)2(iPr)]]] (17), with chiral valine derivatives as substituents on the cyclopentadienyl ring and with excellent diastereoselectivities. Also the Seebach reagent (Boc-BMI) or O'Donnell reagent could be added to 6,6-dimethylfulvene to give the lithium cyclopentadienides Li[C5H4-CMe2-[C3H2(tBu)(N-Boc)(NMe)O]] (18) and Li[C5H4-CMe2-CH(NCPh2)(COOEt)] (21), which formed the ferrocene derivatives [Fe[C5H4-CMe2-[C3H2(tBu)(N-Boc)(NMe)O]]2] (19) and [Fe[C5H4-CMe2-CH(NCPh2)(COOEt)]2] (22). The stable cobaltocinium cation in 11 and the complex 19 could be hydrolyzed to the metallocenes 12 and [Fe(C5H4-CMe2-CH(NH3+)(COO-)]2] (20) with two valines in the 1,1'-position. The structures of 2a, b, 11, 15, and 16 were determined by X-ray diffraction and confirm the diastereomeric purity of the compounds.  相似文献   

7.
New cationic, pentacoordinate complexes [(TPA)Rh1(ethene)]+, [1a]+, and [(MeTPA)Rh1(ethene)]+, [1b]+, have been prepared (TPA = N,N,N-tri(2-pyridylmethyl)amine, MeTPA = N-[(6-methyl-2-pyridyl)-methyl]-N,N-di(2-pyridylmethyl)amine). Complex [1a]+ is selectively converted by aqueous HCl to [(TPA)RhIII-(ethyl)Cl]+, [2a]+. The same reaction with [1b]+ results in the [(MeTPA)RhIII-(ethyl)Cl]+ isomers [2b]+ and [2c]+. Treatment of [1a]+ and [1b]+ with aqueous H2O2 results in a selective oxygenation to the unsubstituted 2-rho-da(III)oxetanes (1-oxa-2-rhoda(III)cyclo-butanes) [(TPA)RhIII(kappa2-C,O-2-oxyethyl)]+, [3a]+, and [(MeTPA)RhIII(kappa2-C,O-2-oxyethyl)]+, [3b]+. The reactivity of 2-rhodaoxetanes [3a]+ and [3b]+ is dominated by the nucleophilic character of their 2-oxyethyl oxygen. Reaction of [3a]+ and [3b]+ with the non-coordinating acid HBAr(f)4 results in the dicationic protonated 2-rhodaoxetanes [(TPA)RhIII(kappa2-2-hydroxyethyl)]2+, [4a]2+, and [(MeTPA)RhIII(kappa2-2-hydroxyethyl)]2+, [4b]2+. These eliminate acetaldehyde at room temperature, probably via a coordinatively unsaturated kappa1-2-hydroxyethyl complex. In acetonitrile, complex [4a]2+ is stabilised as [(TPA)-RhIII(kappa1-2-hydroxyethyl)(MeCN)]2+, [5a]2+, whereas the MeTPA analogue [4b]2+ continues to eliminate acetaldehyde. Reaction of [3a]+ with NH4Cl and Mel results in the coordinatively saturated complexes [(TPA)RhIII(kappa1-2-hydroxyethyl)(Cl)]+, [6a]+, and [(TPA)-RhIII(kappa1-2-methoxyethyl)(I)+, [7a]+, respectively. Reaction of [3a]+ with NH4+ in MeCN results in formation of the dicationic metallacyclic amide [(TPA)-RhIII [kappa2-O,C-2-(acetylamino)ethyl]]2+, [9]2+, via the intermediates [4a]2+, [5a]2+ and the metallacyclic iminoester [(TPA)RhIII[kappa2-N,C-2-(acetimidoyloxy)ethyl]]2+, [8]2+. The observed overall conversion of the [Rh(I)(ethene)] complex [1a]+ to the metallacyclic amide [9]2+ via 2-rhodaoxetane [3a]+, provides a new route for the amidation of a [RhI(ethene)] fragment.  相似文献   

8.
The oxidation processes undergone by the [Pt2(mu-S)2] core in [Pt2(P[intersection]P)2(mu-S)2](P[intersection]P = Ph2P(CH2)nPPh2, n= 2,3) complexes have been analysed on the basis of electrochemical measurements. The experimental results are indicative of two consecutive monoelectronic oxidations after which the [Pt2(mu-S)2] core evolves into [Pt2(mu-S2)]2+, containing a bridging disulfide ligand. However, the instability of the monoxidised [Pt2(P[intersection]P)2(mu-S)2]+ species formed initially, which converts into [Pt3(P[intersection]P)3(mu-S)2]2+, hampered the synthesis and characterisation of the mono and dioxidised species. These drawbacks have been surpassed by means of DFT calculations which have also allowed the elucidation of the structural features of the species obtained from the oxidation of [Pt2(P[intersection]P)2(mu-S)2] compounds. The calculated redox potentials corresponding to the oxidation processes are consistent with the experimental data obtained. In addition, calculations on the thermodynamics of possible processes following the degradation of [Pt2(P[intersection]P)2(mu-S)2]+ are fully consistent with the concomitant formation of monometallic [Pt(P[intersection]P)S2)] and trimetallic [Pt3(P[intersection]P)3(mu-S)2]2+ compounds. Extension of the theoretical study on the [Pt2Te2] core and comparisons with the results obtained for [Pt2S2] have given a more general picture of the behaviour of [Pt2X2](X = chalcogenide) cores subject to oxidation processes.  相似文献   

9.
A novel route for the conversion of (Bu4N)2[Ni(dmit)2] to (Bu4N)2[tto[Ni(dmit)2]] is reported here. This provides a much more efficient way of synthesizing (Bu4N)2[tto[Ni(dmit)2]] than the literature method. During the process, the conversion of dmit2- to tto2- was realized for the first time. This new synthesis should facilitate further research on the conducting bimetallic complexes [C]x[tto[Ni(dmit)2]]. In addition, a new crystal form of (Bu4N)2[tto[Ni(dmit)2]]. In addition, a new crystal form of (Bu4N)2[tto[Ni(dmit)2]] was determined by X-ray crystallographic analysis.  相似文献   

10.
IntroductionThe 1 ,2 - dicyanoethene- 1 ,2 - dithiolato anion isa bidentate ligand.It can form square- coplanarcomplexes with many transition metal ions and hasfound a lot of application in analytical chemistry,catalyst and biochemistry.In recent years,metalcomplexes containing mnt and its dithiolate analogligands have been extensively studied and have re-ceived considerable attention due to their potentialapplication in charge transfer and storage,molecu-lar metals,magnetic materials,supercon…  相似文献   

11.
lp;&-5q;1 The reactions of [Tl2[S2C=C[C(O)Me]2]]n with [MCl2L2] (1:1) or with [MCl2(NCPh)2] and PPh3 (1:1:2) give complexes [M[eta2-S2C=C[C(O)Me]2]L2] [M = Pt, L2 = 1,5-cyclooctadiene (cod) (1); L2 = bpy, M = Pd (2a), Pt (2b), L = PPh3, M = Pd (3a), Pt (3b)] whereas with MCl2 and QCl (2:1:2) anionic derivatives Q2[M[eta2-S2C=C[C(O)Me]2]2] [M = Pd, Q = NMe4 (4a), Ph3P=N=PPh3 (PPN) (4a'), M = Pt, Q = NMe4 (4b)] are produced. Complexes 1 and 3 react with AgClO4 (1:1) to give tetranuclear complexes [[ML2]2Ag2[mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2]](ClO4)2 [L = PPh3, M = Pd (5a), Pt (5b), L2 = cod, M = Pt (5b')], while the reactions of 3 with AgClO4 and PPh3 (1:1:2) give dinuclear [[M(PPh3)2][Ag(PPh3)2][mu2,eta2-(S,S')-S2C=C[C(O)Me]2]]]ClO4 [M = Pd (6a), Pt (6b)]. The crystal structures of 3a, 3b, 4a, and two crystal forms of 5b have been determined. The two crystal forms of 5b display two [Pt(PPh3)2][mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2] moieties bridging two Ag(I) centers.  相似文献   

12.
Acid-catalysed hydrolysis of [CH2[(Sn(Ph2)CH2Si(OiPr)Me2]2] followed by subsequent reaction with mercuric chloride in acetone afforded the novel silicon- and tin-containing eight-membered ring [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] in good yield, the crystal structure of which is reported. 119Sn NMR and X-ray studies indicate that [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] acts as a bidentate Lewis acid towards chloride ions exclusively forming the 1:1 complex [(Ph3P)2N]+[cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2OCl]- upon addition of [(Ph3P)2N]+Cl- . Also reported are the synthesis and structure of [K(dibenzo[18]crown-6)]+[cyclo-CH2(Sn(Cl2)CH2Si(Me2)]2OF]-, the first completely characterised organostannate with a C2SnCl2F- substituent pattern. No ring-opening polymerisation could be achieved for [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] or for its perphenylated derivative [cyclo-CH2[Sn(Ph2)CH2Si(Me2)]2O]. The reaction of [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] with Me3O+BF4- gave the tin-containing fluorosilane [CH2[Sn(Cl2)CH2Si(F)Me2]2], in which the Si-F bond is activated by intermolecular Si-F...Sn interactions in the solid state.  相似文献   

13.
Lee WY  Liang LC 《Inorganic chemistry》2008,47(8):3298-3306
Deprotonation of N-(2-fluorophenyl)-2,6-diisopropylaniline (H[ (i) PrAr-NF]) with 1 equiv of n-BuLi in toluene at -35 degrees C produced cleanly [ (i) PrAr-NF]Li. Subsequent recrystallization of [ (i) PrAr-NF]Li in diethyl ether generated the bis(ether) adduct [ (i) PrAr-NF]Li(OEt 2) 2. An X-ray study of [ (i) PrAr-NF]Li(OEt 2) 2 showed it to be a four-coordinate species with the coordination of the fluorine atom to the lithium center. The reactions of [ (i) PrAr-NF]Li with MCl 4(THF) 2 (M = Zr, Hf), regardless of the stoichiometry employed, afforded the corresponding dichloride complexes [ (i) PrAr-NF] 2MCl 2 (M = Zr, Hf). Alkylation of [ (i) PrAr-NF] 2MCl 2 with a variety of Grignard reagents generated [ (i) PrAr-NF] 2MR 2 (M = Zr, Hf; R = Me, i-Bu, CH 2Ph). The X-ray structures of [ (i) PrAr-NF] 2ZrCl 2, [ (i) PrAr-NF] 2HfCl 2, [ (i) PrAr-NF] 2ZrMe 2, [ (i) PrAr-NF] 2Zr( i-Bu) 2, and [ (i) PrAr-NF] 2Hf(CH 2Ph) 2 are all indicative of the coordination of the fluorine atoms to these group 4 metals, leading to a C 2-symmetric, distorted octahedral geometry for these molecules.  相似文献   

14.
The reaction of [Ni[Co(aet)(2)(pyt)](2)](2+) (aet = 2-aminoethanethiolate, pyt = 2-pyridinethiolate) with [PtCl(4)](2)(-) gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex composed of two [Co(aet)(2)(pyt)] units, [Pt[Co(aet)(2)(pyt)](2)](2+) ([1](2+)). When a 1:1 mixture of [Ni[Co(aet)(2)(pyt)](2)](2+) and [Ni[Co(aet)(2)(en)](2)](4+) was reacted with [PtCl(4)](2)(-), a mixed-type S-bridged Co(III)Pt(II)Co(III) complex composed of one [Co(aet)(2)(pyt)] and one [Co(aet)(2)(en)](+) units, [Pt[Co(aet)(2)(en)][Co(aet)(2)(pyt)]](3+) ([2](3+)), was produced, together with [1](2+) and [Pt[Co(aet)(2)(en)](2)](4+). The corresponding Co(III)Pt(II)Co(III) trinuclear complexes containing pymt (2-pyrimidinethiolate), [Pt[Co(aet)(2)(pymt)](2)](2+) ([3](2+)) and [Pt[Co(aet)(2)(en)][Co(aet)(2)(pymt)]](3+) ([4](3+)), were also obtained by similar reactions, using [Ni[Co(aet)(2)(pymt)](2)](2+) instead of [Ni[Co(aet)(2)(pyt)](2)](2+). While [Pt[Co(aet)(2)(en)](2)](4+) formed both the deltalambda (meso) and deltadelta/lambdalambda (racemic) forms in a ratio of ca. 1:1, the preferential formation of the deltadelta/lambdalambda form was observed for [1](2+) (ca. deltalambda:deltadelta/lambdalambda = 1:3) and [2](3+) (ca. delta(en)lambda(pyt)/lambda(en)delta(pyt):deltadelta/lambdalambda = 1:2). Furthermore, [3](2+) and [4](3+) predominantly formed the deltadelta/lambdalambda form. These results indicate that the homochiral selectivity for the S-bridged Co(III)Pt(II)Co(III) trinuclear complexes composed of two octahedral [Co(aet)(2)(L)](0 or +) units is enhanced in the order L = en < pyt < pymt. The isomers produced were separated and optically resolved, and the crystal structures of the meso-type deltalambda-[1]Cl(2).4H(2)O and the spontaneously resolved deltadelta-[4](ClO(4))(3).H(2)O were determined by X-ray analyses. In deltalambda-[1](2+), the delta and Lambda configurational mer(S).trans(N(aet))-[Co(aet)(2)(pyt)] units are linked by a square-planar Pt(II) ion through four aet S atoms to form a linear-type S-bridged trinuclear structure. In deltadelta-[4](3+), a similar linear-type trinuclear structure is constructed from the delta-mer(S).trans(N(aet))-[Co(aet)(2)(pymt)] and delta-C(2)-cis(S)-[Co(aet)(2)(en)](+) units that are bound by a Pt(II) ion with a slightly distorted square-planar geometry through four aet S atoms.  相似文献   

15.
The reaction of fac(S)-[Co(aet)(3)](aet = aminoethanethiolate) with [PdCl(4)](2-) in a 2:1 ratio in water gave an S-bridged Co(III)Pd(II)Co(III) trinuclear complex composed of two mer(S)-[Co(aet)(3)] units, [Pd[Co(aet)(3)](2)](2+)([1](2+)). In [1](2+), each of the two mer(S)-[Co(aet)(3)] units is bound to a square-planar Pd(II) ion through two of three thiolato groups, leaving two non-bridging thiolato groups at the terminal. Of two geometrical forms, syn and anti, possible for [Pd[Co(aet)(3)](2)](2+), which arise from the difference in arrangement of two terminal non-bridging thiolato groups, [1](2+) afforded only the syn form. A similar reaction of fac(S)-[Co(aet)(3)] with [PtCl(4)](2-) or trans-[PtCl(2)(NH(3))(2)] produced an analogous Co(III)Pt(II)Co(III) trinuclear complex, [Pt[Co(aet)(3)](2)](2+)([2](2+)), but both the syn and anti forms were formed for [2](2+). Complexes [1](2+) and syn- and anti-[2](2+), which exclusively exist as a racemic(DeltaDelta/LambdaLambda) form, were successfully optically resolved with use of [Sb(2)(R,R-tartrato)(2)](2-) as the resolving agent. The reaction of syn-[2](2+) with [AuCl[S(CH(2)CH(2)OH)(2)]] led to the formation of an S-bridged Co(III)(4)Pt(II)(2)Au(I)(2) octanuclear metallacycle, [Au(2)[Pt[Co(aet)(3)](2)](2)](6+)([3](6+)), while the corresponding reaction of anti-[2](2+) afforded a different product ([[4](3+)](n)) that is assumed to have a polymeric structure in [[Au[Pt[Co(aet)(3)](2)]](3+)](n).  相似文献   

16.
Reactions of UCl4 with calix[n]arenes (n = 4, 6) in THF gave the mononuclear [UCl2(calix[4]arene - 2H)(THF)2].2THF (.2THF) and the bis-dinuclear [U2Cl2(calix[6]arene - 6H)(THF)3]2.6THF (.6THF) complexes, respectively, while the mono-, di- and trinuclear compounds [Hpy]2[UCl3(calix[4]arene - 3H)].py (.py), [Hpy](4)[U2Cl6(calix[6]arene - 6H)].3py (.3py), [Hpy]3[U2Cl5(calix[6]arene - 6H)(py)].py (.py) and [Hpy]6[U3Cl11(calix[8]arene - 7H)].3py (.3py) were obtained by treatment of UCl4 with calix[n]arenes (n = 4, 6, 8) in pyridine. The sodium salt of calix[8]arene reacted with UCl4 to give the pentanuclear complex [U{U2Cl3(calix[8]arene - 7H)(py)5}2].8py (.8py). Reaction of U(acac)4 (acac = MeCOCHCOMe) with calix[4]arene in pyridine afforded the mononuclear complex [U(acac)2(calix[4]arene - 2H)].4py (.4py) and its treatment with the sodium salt of calix[8]arene led to the formation of the 1D polymer [U2(acac)6(calix[8]arene - 6H)(py)4Na4]n. The sandwich complex [Hpy]2[U(calix[4]arene - 3H)2][OTf].4py (.4py) was obtained by treatment of U(OTf)4 (OTf = OSO2CF3) with calix[4]arene in pyridine. All the complexes have been characterized by X-ray diffraction analysis.  相似文献   

17.
The mono(guanidinato) complex [Ti(NMe2)2Cl{i-PrNC[N(SiMe3)2]N-i-Pr}] (1) was prepared by reaction of [Ti(NMe2)2Cl2] with 1 or 2 equiv of the lithium guanidinate salt [Li{i-PrNC[N(SiMe3)2]N-i-Pr}]. Compound 1 has been characterized by X-ray crystallography. Treatment of TiCl4 with 2 equiv of [Li{i-PrNC[N(SiMe3)2]N-i-Pr}] resulted in the formation of dark red crystals. X-ray crystallography showed that these crystals consist of a 70:30 mixture of two bis(guanidinato) complexes, namely, [TiCl2{i-PrNC[N(SiMe3)2]N-i-Pr}{i-PrNC(N=CMe2)N-i-Pr}] (2) and [TiCl2{i-PrNC[N(SiMe3)2]N-i-Pr}{i-PrNC[N(H)-i-Pr]N-i-Pr}] (3). Both compounds 2 and 3 possess a transformed guanidinate ligand. Low-pressure chemical vapor deposition of either compound 1 or [TiCl2{i-PrNC(NMe2)N-i-Pr}] (4) at 600 degrees C results in thin films of titanium carbonitride.  相似文献   

18.
The synthesis and spectroscopic properties of trans-[RuL4(C[triple bond]CAr)2] (L4 = two 1,2-bis(dimethylphosphino)ethane, (dmpe)2; 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane, 16-TMC; 1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane, N2O2) are described. Investigations into the effects of varying the [RuL4] core, acetylide ligands, and acetylide chain length for the [(-)C[triple bond]C(C6H4C[triple bond]C)(n-1)Ph] and [(-)C[triple bond]C(C6H4)(n-1)Ph] (n = 1-3) series upon the electronic and electrochemical characteristics of trans-[RuL4(C[triple bond]CAr)2](0/+) are presented. DFT and TD-DFT calculations have been performed on trans-[Ru(L')4(C[triple bond]CAr)2](0/+) (L' = PH3 and NH3) to examine the metal-acetylide pi-interaction and the nature of the associated electronic transition(s). It was observed that (1) the relationship between the transition energy and 1/n for trans-[Ru(dmpe)2{C[triple bond]C(C6H4C[triple bond]C)(n-1)Ph}2] (n = 1-3) is linear, and (2) the sum of the d(pi)(Ru(II)) --> pi*(C[triple bond]CAr) MLCT energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2] and the pi(C[triple bond]CAr) --> d(pi)(Ru(III)) LMCT energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2]+ corresponds to the intraligand pi pi* absorption energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2]. The crystal structure of trans-[Ru(dmpe)2{C[triple bond]C(C6H4C[triple bond]C)2Ph}2] shows that the two edges of the molecule are separated by 41.7 A. The electrochemical and spectroscopic properties of these complexes can be systematically tuned by modifying L4 and Ar to give E(1/2) values for oxidation of trans-[RuL4(C[triple bond]CAr)2] that span over 870 mV and lambda(max) values of trans-[RuL4(C[triple bond]CAr)2] that range from 19,230 to 31,750 cm(-1). The overall experimental findings suggest that the pi-back-bonding interaction in trans-[RuL4(C[triple bond]CAr)2] is weak and the [RuL4] moiety in these molecules may be considered to be playing a "dopant" role in a linear rigid pi-conjugated rod.  相似文献   

19.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

20.
[Na(2)(thf)(4)(P(4)Mes(4))] (1) (Mes = 2,4,6-Me(3)C(6)H(2)) reacts with one equivalent of [NiCl(2)(PEt(3))(2)], [NiCl(2)(PMe(2)Ph)(2)], [PdCl(2)(PBu(n)(3))(2)] or [PdCl(2)(PMe(2)Ph)(2)] to give the corresponding nickel(0) and palladium(0) dimesityldiphosphene complexes [Ni(eta(2)-P(2)Mes(2))(PEt(3))(2)] (2), [Ni(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (3), [Pd(eta(2)-P(2)Mes(2))(PBu(n)(3))(2)] (4) and [Pd(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (5), respectively, via a redox reaction. The molecular structures of the diphosphene complexes 2-5 are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号