首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以Al2(SO4)3·18H2O为原料,采用熔融盐法制备片状α-Al2O3粉体,详细研究了纳米α-Al2O3晶种与片状α-Al2O3晶种对片状α-Al2O3粉体粒径大小的影响.研究表明,随着纳米α-Al2O3晶种含量的增加,片状α-Al2O3粉体平均粒径明显减小;随着片状α-Al2O3晶种含量的增加,片状α-Al2O3粉体平均粒径会增大,但粒径增大的幅度会逐步降低.对片状α-Al2O3粉体粒径大小进行了数值模拟,模拟结果表明,片状α-Al2O3粉体的最终平均粒径大小与片状α-Al2O3晶种粒径成正比,与片状α-Al2O3晶种含量的三次方根成反比关系;通过改变片状α-Al2O3晶种的粒径大小与含量,能够很好地实现片状α-Al2O3粉体粒径大小的控制.  相似文献   

2.
以NH4Al(SO4)2与NH4HCO3为原料,采用共沉淀法制备出前驱物碳酸铝铵(AACH),并煅烧得到超细α-Al2O3粉末. 研究了pH值、滴加速度及醇水混合溶剂等因素对反应产物的影响,并对前驱物AACH的高温相变过程和α-Al2O3籽晶对θ-Al2O3→α-Al2O3相变的影响进行了分析.利用XRD、TEM和BET等对粉体的性能进行表征.结果表明:在醇水混合溶剂中控制反应体系的pH值为9~10,将硫酸铝铵溶液以<18 mL/min的速度滴入碳酸氢铵溶液,可合成颗粒细小、粒度分布均匀且分散性优异的AACH前驱物.不含籽晶的AACH煅烧时α相完全转化温度为1150 ℃,获得α-Al2O3粒径约为100 nm,而α-Al2O3籽晶的加入可将完全转变温度降至1050 ℃,获得的α-Al2O3粒径约为70 nm.  相似文献   

3.
研究了纳米铝粉的氧化性质,并利用Al(NO3)3*9H2O、氨水和纳米铝粉为原料,采用液相沉淀法制备出Al(OH)3溶胶,经过真空抽滤和高温煅烧获得了纳米α-Al2O3粉体. 利用DSC/TG曲线分析了纳米铝粉和复合粉体不同温度下晶型和重量的变化,利用XRD分析了不同煅烧温度下复合粉体的成份变化、利用SEM观测了获得的α-Al2O3粉体形貌.研究表明纳米铝粉在相对较低的温度下氧化,这种氧化物籽晶的存在有利于α-Al2O3晶型的低温转化.  相似文献   

4.
以ZrOCl2·8H2O、Al(NO3)3·9H2O、Y(NO3)3为原料,NH4HCO3 (AHC)为络合剂,采用共沉淀法制备Al2 O3-ZrO2复合纳米粉体.利用X射线衍射分析(XRD)、扫描电镜(SEM)、透射电子显微镜(TEM)、激光粒度分析仪等对Al2 O3-ZrO2复合粉体进行测试表征,详细研究了pH和AHC/Zr摩尔比对复合粉体的影响.结果表明,当前驱体的煅烧温度低于1200℃时,只形成t-ZrO2相,当煅烧温度达到1300℃时,α-Al2O3相开始形成;沉淀反应的pH和AHC/Zr摩尔比对Al2O3-ZrO2复合粉体的产率有很大的影响.在pH7、AHC/Zr =4.5:1的条件下制备前驱体,经过1300℃煅烧2h得到两相纯度高,分散性能好,粒度分布窄,平均粒径为0.75 μm的Al2O3-ZrO2复合粉体.  相似文献   

5.
水热法合成α-Al2O3晶体   总被引:14,自引:9,他引:5  
本文研究了不同矿化剂,不同温度对水热条件下合成α-Al2O3晶体的大小、形貌和晶体质量的影响.发现在矿化剂浓度为0.1M KOH和1M KBr条件下,填充度为35;,温度为380℃时Al(OH)3只转化成薄水铝石,无α-Al2O3晶体生成;388℃时只是部分转化成α-Al2O3;在395℃以上时完全能转化成α-Al2O3,晶体形状为六棱柱形.在矿化剂浓度为1M KOH时,填充度35;,温度为380℃时,即有部分Al(OH)3转化成α-Al2O3,390℃以上完全转化成α-Al2O3,晶面主要显露菱面.  相似文献   

6.
用共沉淀法制备了钇铝石榴石(Y3Al5O12)纳米粉体,研究了正滴定、反滴定和一步注入工艺对钇铝石榴石纳米粉体合成过程及最终产物的影响。利用X射线衍射仪、傅立叶红外光谱仪、同步热分析仪、场发射电子显微镜对YAG前驱体及不同温度煅烧后的粉体进行表征。结果表明:通过正滴定、反滴定和一步注入工艺,分别制备出化学组成为10[8.9Al(OH)3+1·1NH4Al·(OH)2CO3]·3[Y2(CO3)3·3H2O]、10[7.3Al(OH)3+2.7NH4Al·(OH)2CO3]·3[Y2(CO3)3.3H2O]、10[Al(OH)3]·3[Y2(CO3)3·3H2O]的前驱体。前驱体经900℃煅烧2 h后,正、反滴定工艺得到的粉体主相为YAG(Y3Al5O12),但有少量的YAP(YAlO3),一步注入工艺则得到纯的YAG相。晶粒尺寸分别为85 nm、70 nm和65 nm,且一步注入工艺获得的粉体粒径分布较窄,分散性良好。  相似文献   

7.
分别采用非水解和水解溶胶-凝胶法制备MgAl2O4粉体,利用DTA-TG、XRD和FE-SEM等研究了凝胶煅烧过程中的相变化、粉体形貌及其烧结性能.研究表明,水解凝胶经900℃煅烧0.5h后可形成大量镁铝尖晶石晶相,但仍有少量的方镁石相存在,非水解凝胶经900℃煅烧0.5h后只有镁铝尖晶石晶相.采用水解和非水解法所合成MgAl2O4粉体的平均粒径分别为90nm和50 nm,其经1600℃烧结3h后晶粒尺寸分别为1~2 μm和0.5 ~1μm,晶粒多呈八面体形状,相比之下,采用水解法时MgAl2O4晶体发育较好,出现了明显的生长台阶.  相似文献   

8.
以硫酸铝铵和碳酸氢铵为主要原料,采用沉淀法制备纳米碳酸铝铵(AACH)前驱体,通过碳酸铝铵热分解制备α-Al2O3,并利用X射线衍射(XRD),透射电镜(TEM)对前驱体及其煅烧产物的物相和形貌进行表征.研究表明通过添加氯化铵能够降低α-Al2O3的相变温度,并且随着加入量的增加,颗粒粒径减小,分散性改善.加入10;氯化铵的前驱体在1150 ℃下煅烧1 h后可以得到分散性较好的纳米α-Al2O3颗粒.  相似文献   

9.
水热法合成矾土基α-Al2O3纳米粉   总被引:1,自引:1,他引:0  
以650 ℃轻烧后的高铝矾土为原料,利用水热法合成了以α-Al2O3为主晶相的纳米粉.研究了晶种、矿化剂、水热温度和水热时间对产物中α-Al2O3含鼍、晶粒度大小的影响,采用XRD、SEM分析了纳米粉体的物相与形貌.结果表明,加入3;质量分数的晶种在380℃水热处理2 h后,合成出晶粒度为28 nm、以α-Al2O3为主晶相的α-Al2O3纳米粉,其形貌呈圆球状,二次粒度为190 nm.  相似文献   

10.
通过机械激活法制备了Al2TiO5/Al2O3(nAl2TiO5: nAl2O3=1: 4)的陶瓷复合材料.利用X射线衍射(XRD)、扫描电镜(SEM)以及能谱(EDS)分析了不同的温度制度下Al2TiO5/Al2O3陶瓷复合材料的晶粒生长特性.X射线衍射谱图(XRD)显示烧结样品的主晶相为α-Al2O3和Al2TiO5.SEM和EDS分析显示,较低温度下烧结(1350 ℃)时Al2TiO5晶粒为等轴状.当温度升高到1450 ℃时,Al2TiO5开始异向长大,形成棒状晶粒.随着温度的升高(1500 ℃),棒状Al2TiO5的长径比继续增加.而Al2O3则始终为片状和等轴晶粒,且异向生长的Al2TiO5晶粒填充于Al2O3三角晶界处.研究表明,烧结温度的升高会促进晶体异向生长并增加其体积分数.Al2TiO5会阻碍Al2O3基体颗粒进一步生长,所以当Al2TiO5颗粒平均尺寸随着烧结温度增加而增大,Al2O3基体晶粒生长几乎停滞.  相似文献   

11.
刘聪  郭伟明  赵哲  伍尚华 《人工晶体学报》2017,46(12):2352-2355
以α-Si3N4粉为原料,通过添加不同含量的Y2O3-Al2O3烧结助剂(6wt;、8wt;和10wt;),在1800℃下采用热压烧结制备了Si3 N4陶瓷,研究了Y2 O3-Al2 O3含量对Si3 N4陶瓷的物相、致密度、显微结构与力学性能的影响,结果表明:添加6wt;的Y2 O3-Al2 O3助剂即可获得高致密的Si3 N4陶瓷,继续增加助剂含量对Si3 N4陶瓷的致密度影响不大,但是显著影响 α-Si3 N4相和β-Si3 N4相的含量,较高的Y2 O3-Al2 O3助剂含量有利于α-Si3 N4转化为β-Si3 N4.不依赖于Y2 O3-Al2 O3助剂含量,Si3 N4陶瓷均包含细小的等轴晶粒和大尺寸的棒状晶粒,呈现双峰结构,但是Y2 O3-Al2 O3助剂含量增加到10wt;时,可以显著增加棒状晶粒的数量,形成更显著的双峰结构.基于当前研究,发现加入低含量的Y2O3-Al2O3助剂(6wt;),可以获得高硬度高强度的Si3N4陶瓷,而引入高含量的Y2O3-Al2O3助剂(10wt;),则可以获得高韧性高强度的Si3N4陶瓷.  相似文献   

12.
采用等体积浸渍法改性制备了K2 WO4/Al2 O3催化剂,研究了载体Al2 O3晶型对K2 WO4/Al2 O3催化剂物化性质及催化合成甲硫醇的影响.借助XRD、SEM、EDS、BET及NH3/CO2-TPD等手段对不同催化剂的晶相组成、微观形貌、孔结构及表面酸碱性质进行了表征分析.结果表明,Al2 O3晶型对K2 WO4/Al2 O3催化剂晶相组成及微观形貌影响较小,但对孔结构及表面酸碱性质影响较大.与K2 WO4/η-Al2 O3和K2 WO4/θ-Al2 O3催化剂相比,K2 WO4/γ-Al2 O3催化剂具有更大比表面积及孔容(介孔比表面积为226.75 m2·g-1,总孔容为0.557 cm3·g-1),且表面仅有弱酸和弱碱中心(弱酸浓度为0.42521 mmol·g-1,弱碱浓度为0.44184 mmol·g-1).在反应温度370℃,反应压力1.0 MPa,H2 S流速4.9 mL·min-1,CH3 OH流速0.03 mL·min-1反应条件下,K2 WO4/γ-Al2 O3催化剂表现出优良催化性能,甲醇转化率和甲硫醇选择性分别达81.58;和87.05;,与K2 WO4/η-Al2 O3和K2 WO4/θ-Al2 O3催化剂相比,甲醇转化率分别提高了4.23;和19.42;,甲硫醇选择性分别提高了14.68;和7.85;.  相似文献   

13.
采用直接沉淀-超临界流体干燥方法合成了纳米SrSO4粉体,以溶胶-凝胶法对其表面进行包覆Al(OH)3凝胶的处理,经煅烧后制备出Al2O3包覆SrSO4纳米复合粉体。通过XRD、TEM、SEM等对不同工艺条件下制备的纳米复合粉体的表面形貌和特性进行了研究。研究表明:当Al3+的浓度为0.1 mol/L、pH值为8时,可以获得好的氧化铝前驱体包覆SrSO4纳米复合粉体,经700℃煅烧3 h后获得了均匀、致密的Al2O3包覆SrSO4纳米复合粉体。  相似文献   

14.
采用柠檬酸凝胶燃烧法制备了Nd∶YAGG多晶粉体.将Nd2O3,Ga2O3,Y2O3和Al(NO3)3分别用稀硝酸溶解后,与柠檬酸溶液均匀混合并于100℃加热4h,可以得到棕黄色凝胶,凝胶自燃可获得干凝胶.干凝胶分别在500℃、700℃和900℃下进行煅烧获得Nd∶ YAGG多晶粉体.红外光谱测试表明NO、OH等在900℃已被分解完全;扫描电镜观察发现煅烧后的Nd∶ YAGG多晶粉体是由规则的球状颗粒组成,粒径约为30 nm;XRD测试表明900℃为Nd∶ YAGG多晶粉体的最佳煅烧温度;荧光光谱分析发现Nd∶ YAGG多晶粉体具有较好的荧光性能,荧光发射的最强峰位于1064.54 nm处,属于Nd3+的4F3/2-4I11/2能级跃迁.  相似文献   

15.
以钛酸正丁酯和无水氯化钙为原料,采用水热法制备了不同紫外光催化特性的CaTi2O4(OH)2粉体.利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对样品的相结构和微观形貌进行了分析,并结合粉体的紫外-可见吸收分光光谱表征了材料的吸收特性及带隙宽度.研究了不同水热反应温度对CaTi2O4(OH)2物相结构、微观形貌、晶体生长特性及紫外光催化性能的影响.结果表明:水热反应温度控制在160~200 ℃时,保温36 h都能得到纯的CaTi2O4(OH)2相,粉体的形貌随着水热反应温度的提高经历了由片状和颗粒垛堆到发育成完整的片状形貌过程,当水热反应温度在200 ℃时,片与片之间出现积聚现象;在水热反应温度为180 ℃时,制备的粉体具有最高的结晶度,在紫外光5 h下对罗丹明B的催化效率最佳.  相似文献   

16.
铝高温氧化过程中表面氧化物的有序转变及形貌观察   总被引:2,自引:0,他引:2  
采用同步热分析(Simultaneous Thermal Analysis, STA)分析了Al在非高压空气下(压力0.2 MPa,流速20 NmL/min)的氧化过程.用X射线衍射(XRD)对铝粉颗粒表面生成的氧化物进行了物相分析并用扫描电镜(SEM)观察了表面形貌.研究结果表明,140 ℃铝开始氧化,300 ℃以上开始生成γ-Al2O3,一直持续至515 ℃左右.从666.1 ℃开始,表面生成氧化物的铝粉颗粒芯层中的铝熔融.从773 ℃开始,γ-Al2O3转变成α-Al2O3, 800 ℃,α-Al2O3开始生长,α-Al2O3的生长遵循Sigmoid(Boltzmann)模型.整个氧化过程,铝粉的氧化占主要地位,但也包括铝粉的氮化.XRD、SEM的分析结果表明,表面生成的AlN及α-Al2O3为纳米级,弥散分布于铝粉颗粒表面.  相似文献   

17.
利用水热法通过改变填充溶剂的种类制备了不同形貌的CaTi2 O4(OH)2粉体.采用X射线衍射仪和扫描电子显微镜对粉体的相结构和微观形貌进行了分析,并结合粉体在紫外-可见吸收光下对罗丹明B的吸附率及光降解率进行了表征.研究了不同填充溶剂对CaTi2 O4 (OH)2的相结构、微观形貌、能带宽度以及光催化性能的影响.结果表明:乙醇和乙二醇作为填充溶剂时会抑制晶体的生长和发育,可获得纳米线状或团状CaTi2 O4 (OH)2粉体,对罗丹明B表现出较佳的吸附特性;无填充溶剂以及以水和环己烷分别作为填充溶剂可获得具有片状结构的CaTi2O4(OH)2粉体.填充环己烷能够促进CaTi2O4(OH)2相的生长和发育,结晶度最高达到了78.04;,在紫外可见光3h下对罗丹明B降解率达到91.6;.  相似文献   

18.
水热法合成α-Al2O3晶体的晶面形态   总被引:4,自引:1,他引:3  
本文研究了高温高压水热法合成α-Al2O3晶体的形状和表面形态.原料为Al(OH)3,矿化剂的浓度为1M KBr、0.1 M KOH,填充度35;, 温度388℃时,可部分自发生成α-Al2O3晶体.温度超过395℃以上,可全部转化成α-Al2O3晶体,晶体形状为六棱柱体,显露底面{0001}和柱面{21 10}、{1120}、{1210},晶体的表面呈现阶梯.在矿化剂为1M KOH,填充度35;,温度为380℃时,部分自发生成α-Al2O3晶体,晶体的底面{0001}和柱面{1120}消失,呈现双锥形;当温度达到395℃时,可全部转化成α-Al2O3晶体,晶体呈双锥形,晶面呈条状阶梯形;温度达到405℃以上,晶体又呈现六棱柱体.  相似文献   

19.
以片状铝粉、硝酸铋(Bi(NO3)3.5H2O)为主要原料,通过共沉淀法将Bi2O3复合于片状金属铝粉表面,获得了包覆效果良好的Al/Bi2O3复合粒子。为了保证复合粒子的红外隐身性能,利用SEM、XRD、IR对复合粒子形貌、物相组成等进行了表征,并采用红外发射率仪测试了复合粒子的红外辐射率。结果表明,在共沉淀反应温度50℃,反应时间2 h,前驱体煅烧温度为450℃时,所制得的复合粒子为黄色粉体,红外发射率为0.73,Bi2O3包覆在Al的表面使得复合粒子呈现黄色,从而避免Al粉的"显形"和氧化,为红外迷彩隐身提供了一种优良材料。  相似文献   

20.
通过控制水含量,用水热法制备了CaTi2O4(OH)2片状结构。通过对水含量为50 mol条件下所制备的CaTi2O4(OH)2片状结构煅烧来制备CaTiO3片状结构。当热处理温度≤400℃,CaTi2O4(OH)2纳米片状结构稳定存在。当热处理温度为650℃和750℃,制备了CaTiO3片状结构。采用XRD、SEM和TEM等测试方法对片状结构进行表征,并对CaTi2O4(OH)2片状结构向CaTiO3片状结构转化的反应过程和形成机理进行分析。在热处理温度400℃时,样品的首次放电比容量最大,可达到168.5 mAh/g。当热处理温度继续升高到650℃和750℃,样品的首次充放电容量分别为18.9 mAh/g和5 mAh/g。这说明发育完善的CaTi2O4(OH)2片状结构有利于电化学过程中离子的嵌入和脱出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号