首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 343 毫秒
1.
以片状的BN为基体粉料,采用流延成型工艺结合热压烧结制备BN织构陶瓷,并对其结构、断面形貌以及力学性能进行了研究.实验结果表明,BN晶粒选择沿(002)晶面择优定向排列.织构陶瓷的力学性能呈现出明显的各向异性: 当加载方向垂直于片层时,弯曲强度和断裂韧性分别为53.75 MPa 和1.51 MPa·m1/2,均优于水平方向的力学性能.垂直方向上良好的性能归因于加载时片状颗粒引起的裂纹偏转.  相似文献   

2.
采用热压烧结方法制备了羟基磷灰石/透辉石复相陶瓷材料,分析了羟基磷灰石基体与透辉石之间的界面结合、扩展及渗透过程,测试了复合材料的断裂韧性、硬度、抗弯强度与添加剂含量的对应关系,并对复相陶瓷材料的微观结构与力学性能进行了研究.结果表明:在1320℃,28MPa条件下热压烧结制备的复相陶瓷材料,其抗弯强度、断裂韧性均有明显提高,抗弯强度达到90MPa,断裂韧性达到1.07MPa·m1/2.  相似文献   

3.
采用热压烧结法制备了Co包覆纳米Al2O3/TiC复合材料.当热压烧结温度为1650℃时,复合材料的抗弯强度、断裂韧性和硬度分别为782MPa、7.81MPa*m1/2和HRA92.7.Al2O3和Al2O3/TiC的断口以沿晶断裂为主,Co包覆Al2O3/TiC复合材料的断口则为沿晶和穿晶混合断口.利用经验电子理论计算了Co、TiC与α-Al2O3三者的价电子结构及其部分晶面的电子密度,并对三相的晶体学取向进行了预测.  相似文献   

4.
采用真空热压烧结工艺制备了Ti(C,N)基纳米复合金属陶瓷模具材料,并研究了该模具材料的力学性能与微观结构.结果表明,当烧结温度为1450℃,保温时间为10 min时,模具材料的硬度、断裂韧性和抗弯强度分别为14.57 GPa、8.6 MPa·m1/2和1144 MPa;当烧结温度为1450℃,保温时间为30 min时,模具材料的硬度、断裂韧性和抗弯强度分别为16.29 GPa、7.53 MPa·m1/2和1035 MPa.在这两种烧结工艺下制备的模具材料均具有良好的综合力学性能,烧结工艺得到优化,可以满足不同硬度材料的成型需求.在对模具材料的微观结构分析时发现,模具材料的断裂方式是以沿晶断裂为主的穿晶与沿晶断裂的混合断裂模式.  相似文献   

5.
本文通过超声波将短碳纤维(Csf)与偏高岭土、α-Al2O3颗粒(α-Al2O3p)预分散混合,然后加入到碱金属溶液中的方式制备了及Csf单独以及Csf与α-Al2O3p复合强韧的无机聚合物基复合材料,研究了及Csf、α-Al2O3p含量对复合材料的组织结构,机械性能以及断裂行为的影响规律。结果表明:及Csf在基体中分散均匀。采用及Csf单独强韧复合材料的抗弯强度、断裂韧性随着纤维含量的增加都呈先减小后增加的规律,其中纤维含量为2 vol%时分别达到28.4 MPa和0.6 MPa.m1/2,相比基体分别增加了0.85倍和1倍。采用及Csf与α-Al2O3p复合强韧的无机聚合物基复合材料,虽然其抗弯强度较及Csf单独强韧的复合材料低并与α-Al2O3p的含量成反比,但是其断裂韧性较及Csf单独强韧复合材料的高,并在α-Al2O3p加入量为8 wt%时达到最大值为0.75 MPa.m1/2。复合材料在断裂过程中呈现非脆性断裂方式,并且及Csf与α-Al2O3p复合强韧的无机聚合物基复合材料在断裂过程中载荷位移曲线呈现锯齿形增长。复合材料断裂行为和断口分析表明,碳纤维的桥联,拔出是复合材料主要的强韧化机制。  相似文献   

6.
工业级氢氧化铝制备高韧性氧化铝陶瓷及机理分析   总被引:3,自引:1,他引:2  
采用价格低廉的工业氢氧化铝粉为初始原料,通过球磨介质磨耗向氢氧化铝中引入高纯α-Al2O3作为晶种,通过热压烧结,氧化铝晶粒原位异向生长成长柱状和板状的晶粒,从而在瓷体的断裂过程中产生裂纹桥接、偏转和晶粒拔出的增韧机制,使制备出的氧化铝陶瓷断裂韧性得到了显著的提高.在热压烧结压力为30 MPa、1600 ℃烧结2 h制备的氧化铝烧结体,其抗弯强度和断裂韧性分别为550 MPa、6.08 MPa·m1/2.  相似文献   

7.
以二硼化锆、硅和活性碳为原材料,在1850℃、20 MPa条件下,采用反应热压烧结工艺制备出了SiC/ZrB2陶瓷基复合材料.研究了添加剂(硅和活性碳)含量对ZrB2陶瓷烧结行为和力学性能的影响.借助X射线衍射和扫描电镜分析了复合材料的物相组成和微观结构.研究结果表明:添加剂可以显著提高复合材料的烧结致密度和力学性能.复合材料的XRD衍射图谱中只有ZrB2和SiC的衍射峰.当添加剂含量为12wt;时,复合材料的弯曲强度和断裂韧性分别达到584MPa和7.25MPa ·m1/2.显微结构分析表明,致密度的提高、晶粒粒径的减小以及断裂模式的转变是复合材料力学性能提高的主要原因.  相似文献   

8.
ZrO2/Fe3Al复合材料的界面电子结构计算及材料制备   总被引:3,自引:1,他引:2  
采用热压烧结制备了ZrO2(3Y)/Fe3Al复合材料,材料的室温抗弯强度、断裂韧性、HRA硬度分别为1321MPa、39MPa*m1/2、86.7,临界热震温差(ΔT)由单相ZrO2(3Y)的250℃提高至500℃.在此基础上,用EET理论(经验电子理论)计算了ZrO2与Fe3Al的价电子结构及其部分晶面的电子密度,并对两相的晶体学取向进行了预测.  相似文献   

9.
采用两种不同素坯成型工艺制备层状C/ZrB2-SiC复合材料,并对其微观结构和力学性能进行研究.结果表明:高温下预压成型制备的层状ZrB2-SiC复合材料层厚均匀,界面平直,弯曲强度和断裂韧性较高,分别达到427MPa和11.3 MPa·m1/2.而室温下预压成型各层厚度不均,界面弯曲,出现界面交叉现象,弯曲强度和断裂韧性较低,分别为277 MPa和9.4 MPa·m1/2.采用素坯高温预压成型制备的层状C/ZrB2-SiC复合材料力学性能较高,主要归因于界面平直,裂纹交替通过基体层和界面层,裂纹的扩展路径变长,断裂功增加.  相似文献   

10.
先对碳纤维进行对氨基苯甲酸预处理,然后通过溶胶-凝胶技术在预处理后碳纤维表面涂覆HA涂层,随后利用粉末冶金技术制备改性碳纤维增强纳米HA复合材料.研究碳纤维的改性工艺,观察改性后碳纤维表面的微观形貌,测量小同碳纤维含量下复合材料的抗弯强度和断裂韧性.结果表明对氨基苯甲酸处理后碳纤维表面形成大量的纵向凹槽,表面粗糙度增加,将其在HA溶胶中提拉5次后可以在表面获得一层致密的、结合性能较好的膜层.烧结产物中HA过渡层可以很好地连接基体和碳纤维,提高纳米HA复合材料的力学性能,当碳纤维含量为3vol;时,溶胶-凝胶改性碳纤维/纳米HA复合材料的抗弯强度达到最大值84.6 MPa,是基体抗弯强度的3.45倍.当碳纤维含量为4vol;时,溶胶-凝胶改性碳纤维/纳米HA复合材料的断裂韧度达到最大值1.92 MPa·m1/2,是基体断裂韧度的2.43倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号