首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze the transition from deterministic mean-field dynamics of several large particles and infinitely many small particles to a stochastic motion of the large particles. In this transition the small particles become the random medium for the large particles, and the motion of the large particles becomes stochastic. Under the assumption that the empirical velocity distribution of the small particles is governed by a probability density ψ, the mean-field force can be represented as the negative gradient of a scaled version of ψ. The stochastic motion is described by a system of stochastic ordinary differential equations driven by Gaussian space-time white noise and the mean-field force as a shift-invariant integral kernel. The scaling preserves a small parameter in the transition, the so-called correlation length. In this set-up, the separate motion of each particle is a classical Brownian motion (Wiener process), but the joint motion is correlated through the mean-field force and the noise. Therefore, it is not Gaussian. The motion of two particles is analyzed in detail and a diffusion equation is deduced for the difference in the positions of the two particles. The diffusion coefficient in the latter equation is spatially dependent, which allows us to determine regions of attraction and repulsion of the two particles by computing the probability fluxes. The result is consistent with observations in the applied sciences, namely that Brownian particles get attracted to one another if the distance between them is smaller than a critical small parameter. In our case, this parameter is shown to be proportional to the aforementioned correlation length. __________ Published in Ukrains'kyi Matematychnyi Zhurnal, Vol. 57, No. 6, pp. 757–769, June, 2005.  相似文献   

2.
本文首次把Poisson随机测度引入分数倒向重随机微分方程,基于可料的Girsanov变换证明由Brown运动、Poisson随机测度和Hurst参数在(1/2,1)范围内的分数Brown运动共同驱动的半线性倒向重随机微分方程解的存在唯一性.在此基础上,本文定义一类半线性随机积分偏微分方程的随机黏性解,并证明该黏性解由带跳分数倒向重随机微分方程的解唯一地给出,对经典的黏性解理论作出有益的补充.  相似文献   

3.
Parabolic stochastic partial differential Equations (SPDEs) with multiplicative noise play a central rôle in nonlinear filtering. More precisely, the conditional distribution of a partially observed diffusion solves the normalized version of an equation of this type. We show that one can approximate the solution of the SPDE by the (unweighted) empirical measure of a finite system of interacting particle for the case when the diffusion evolves in a compact state space with reflecting boundary. This approximation differs from existing approximations where the particles are weighted and the particle interaction arises through the choice of the weights and not at the level of the particles' motion as it is the case in this work. The system of stochastic differential equations modelling the trajectories of the particles is approximated by the recursive projection scheme introduced by Pettersson [Stoch. Process. Appl. 59(2) (1995), pp. 295–308].  相似文献   

4.
Systems of Wick stochastic differential equations are studied. Using an estimate on the Wick product we apply Picard iteration to prove a general existence and uniqueness theorem for systems of Wick stochastic differential equations. We also show the solution is stable with respect to perturbations of the noise. This result is used to show that the solution of a linear system of Wick stochastic differential equations driven by smoothed Brownian motion tends to the solution of the corresponding It equation as the smoothed process tends to Brownian motion  相似文献   

5.
We prove that the Hamilton–Jacobi equation for an arbitrary Hamiltonian H (locally Lipschitz but not necessarily convex) and fractional diffusion of order one (critical) has classical C1,α solutions. The proof is achieved using a new Hölder estimate for solutions of advection–diffusion equations of order one with bounded vector fields that are not necessarily divergence free.  相似文献   

6.
A Boussinesq model for the Bénard convection under random influences is considered as a system of stochastic partial differential equations. This is a coupled system of stochastic Navier–Stokes equations and the transport equation for temperature. Large deviations are proved, using a weak convergence approach based on a variational representation of functionals of infinite-dimensional Brownian motion.  相似文献   

7.
In this paper, we construct an exact solution of the stochastic Schrodinger equation for a quantum oscillator with possible dissipation of energy taken into account. Using the explicit form of the solution, we calculate estimates for the characteristic damping time of free damped oscillations. In the case of forced oscillations, we obtain formulas for the Q-factor of the system and for the variance of the coordinate and momentum of a quantum oscillator with dissipation. We obtain the quantum analog of the classical diffusion equation and explicitly show that the equations of motion for the mean value of the momentum operator following from the solution of the stochastic Schrodinger equation play the role of the quantum Langevin equation describing Brownian motion under the action of a stochastic force.  相似文献   

8.
This paper presents a new method for modeling amplitude and frequency non-stationary earthquake ground motions using a scalar first order dynamic mean reverting stochastic differential equation driven by Brownian motion with parametric time varying coefficients. It determines the proper relationship between these time varying parametric coefficients and presents the statistical and probability distribution characteristics of the response solution. It demonstrates the applicability of the method by presenting some simulations of amplitude and frequency non-stationary earthquake ground motions. The verification of the amplitude and frequency non-stationary contents of the mean reverting stochastic ground motions is demonstrated using the Hilbert–Huang transform method. Also a corresponding interpretation between the coefficients of the proposed model and the coefficients of the usual oscillatory second order differential equation driven by white Gaussian noise is presented along with some comments how it can be applied to simulate ground motions consistent with acceleration target records such as boxcar, trapezoidal, other exponential functions, or compound and target records at source, near field, and far field distances.  相似文献   

9.
本文研究一类由分数布朗运动驱动的一维倒向随机微分方程解的存在性与唯一性问题,在假设其生成元满足关于y Lipschitz连续,但关于z一致连续的条件下,通过应用分数布朗运动的Tanaka公式以及拟条件期望在一定条件下满足的单调性质,得到倒向随机微分方程的解的一个不等式估计,应用Gronwall不等式得到了一个关于这类方程的解的存在性与唯一性结果,推广了一些经典结果以及生成元满足一致Lipschitz条件下的由分数布朗运动驱动的倒向随机微分方程解的结果.  相似文献   

10.
We consider a controlled linear stochastic infinite-dimensional differential equation with an additive fractional Brownian motion as noise input. An optimal closed-loop control is determined in the case of complete state information and a quadratic goal functional.  相似文献   

11.
Ocone and Pardoux have introduced a stochastic differential equation in which the initial condition and the drift depend on the driving Brownian motion in an anticipative way. In this paper we prove a limit theorem for such equations when the Brownian motion is approximated by a sequence of piecewise linear processes  相似文献   

12.
带随机跳跃的线性二次非零和微分对策问题   总被引:1,自引:0,他引:1  
对于一类以布朗运动和泊松过程为噪声源的正倒向随机微分方程,在单调性假设下,给出了解的存在性和唯一性的结果.然后将这些结果应用于带随机跳跃的线性二次非零和微分对策问题之中,由上述正倒向随机微分方程的解得到了开环Nash均衡点的显式形式.  相似文献   

13.
A mathematical model of Lagrangian motions of a particle in turbulent flows is developed on the basis of a stochastic differential equation. The model expresses uncertainties involved in turbulence by standard Brownian motion. Because the model does not guarantee smoothness of the path of the particle, local velocity is newly defined so as to be suitable for observation of a velocity time series at a fixed point. Then, it is shown that the newly defined local velocity is governed by a Gaussian distribution. In addition, an estimation method of the turbulent diffusion coefficient involved in the model is proposed by using the local velocity. The estimation method does not require tracer experiments. In order to assess the validity of the proposed local velocity, velocity measurements with three-dimensional acoustic Doppler velocimeters were conducted in agricultural drainage canals. Also, the turbulent diffusion coefficient was estimated by the derived time series of the observed local velocity. Finally, a transport equation of conservative solute is derived by using the linearity of the Kolmogorov forward equation without using gradient-type lows.  相似文献   

14.
《随机分析与应用》2013,31(6):1553-1576
Abstract

Stochastic Taylor expansions of the expectation of functionals applied to diffusion processes which are solutions of stochastic differential equation systems are introduced. Taylor formulas w.r.t. increments of the time are presented for both, Itô and Stratonovich stochastic differential equation systems with multi-dimensional Wiener processes. Due to the very complex formulas arising for higher order expansions, an advantageous graphical representation by coloured trees is developed. The convergence of truncated formulas is analyzed and estimates for the truncation error are calculated. Finally, the stochastic Taylor formulas based on coloured trees turn out to be a generalization of the deterministic Taylor formulas using plain trees as recommended by Butcher for the solutions of ordinary differential equations.  相似文献   

15.
The author proves, when the noise is driven by a Brownian motion and an independent Poisson random measure, the one-dimensional reflected backward stochastic differential equation with a stopping time terminal has a unique solution. And in a Markovian framework, the solution can provide a probabilistic interpretation for the obstacle problem for the integral-partial differential equation.  相似文献   

16.
We obtain estimates for functionals of solutions of stochastic differential equations with standard and fractional Brownian motion. We prove a theorem on the existence of weak solutions of stochastic differential equations with standard and fractional Brownian motion, discontinuous coefficients, and a partly degenerate diffusion operator.  相似文献   

17.
The author proves, when the noise is driven by a Brownian motion and an independent Poisson random measure, the one-dimensional reflected backward stochastic differential equation with a stopping time terminal has a unique solution. And in a Markovian framework, the solution can provide a probabilistic interpretation for the obstacle problem for the integral-partial differential equation.  相似文献   

18.
A lattice Boltzmann model for the bimolecular autocatalytic reaction–diffusion equation is proposed. By using multi-scale technique and the Chapman–Enskog expansion on complex lattice Boltzmann equation, we obtain a series of complex partial differential equations, complex equilibrium distribution function and its complex moments. Then, the complex reaction–diffusion equation is recovered with higher-order accuracy of the truncation error. This equation can be used to describe the bimolecular autocatalytic reaction–diffusion systems, in which a rich variety of behaviors have been observed. Based on this model, the Fitzhugh–Nagumo model and the Gray–Scott model are simulated. The comparisons between the LBM results and the Alternative Direction Implicit results are given in detail. The numerical examples show that assumptions of source term can be used to raise the accuracy of the truncation error of the lattice Boltzmann scheme for the complex reaction–diffusion equation.  相似文献   

19.
A new definition of an admitted Lie group of transformations for stochastic differential equations involving Brownian motion is presented. The transformation of the dependent variables involves time as well, and it is proved that Brownian motion is transformed to Brownian motion. Applications to a variety of stochastic differential equations are presented.  相似文献   

20.
We discuss nonparametric estimation of trend coefficient in models governed by a stochastic differential equation driven by a mixed fractional Brownian motion with small noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号