首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We present a microscopic theory of polariton–polariton (PP) scattering in quantum microcavities, which is developed with allowance for the composite nature of polaritons. Analytical estimations of the effective scattering rate for PP scattering with parallel spin configuration are presented, and the role of dark excitons in the opposite spin configuration is discussed.  相似文献   

2.
A remarkable analogy is established between the well-known spin Hall effect and the polarization dependence of Rayleigh scattering of light in microcavities. This dependence results from the strong spin effect in elastic scattering of exciton polaritons: if the initial polariton state has a zero spin and is characterized by some linear polarization, the scattered polaritons become strongly spin polarized. The polarization in the scattered state can be positive or negative dependent on the orientation of the linear polarization of the initial state and on the direction of scattering. Very surprisingly, spin polarizations of the polaritons scattered clockwise and anticlockwise have different signs. The optical spin Hall effect is possible due to strong longitudinal-transverse splitting and finite lifetime of exciton polaritons in microcavities.  相似文献   

3.
We observe anisotropy in the polarization flux generated in a GaAs/AlAs photonic cavity by optical illumination, equivalent to spin currents in strongly coupled microcavities. Polarization rotation of the scattered photons around the Rayleigh ring is due to the TE-TM splitting of the cavity mode. Resolving the circular polarization components of the transmission reveals a separation of the polarization flux in momentum space. These observations constitute the optical analogue of the spin Hall effect.  相似文献   

4.
Diamagnetism of condensed microcavity polaritons in a vertically applied magnetic field is theoretically studied by using the density of free energy of polaritons. The magnetic dependence of polariton–polariton interactions and spin polarization degree of polaritons are derived, and are used to show the diamagnetic behavior of the polariton spin polarization, which is discussed for GaAs-based microcavities. We show that for strong magnetic field the spin polarization of the polaritons is paramagnetic as usual, while around positive exciton–photon detuning and special Rabi splitting, the spin polarization of the polaritons could be diamagnetic. In addition, weak magnetic field and high polariton density are beneficial to observe the polariton diamagnetism.  相似文献   

5.
The optical spin Hall effect appears when elastically scattered exciton polaritons couple to an effective magnetic field inside of quantum wells in semiconductor microcavities. Theory predicts an oscillation of the pseudospin of the exciton polaritons in time. Here, we present a detailed analysis of momentum space dynamics of the exciton polariton pseudospin. Compared to what is predicted by theory, we find a higher modulation of the temporal oscillations of the pseudospin. We attribute the higher modulation to additional components of the effective magnetic field which have been neglected in the foundational theory of the optical spin Hall effect. Adjusting the model by adding non-linear polariton-polariton interactions, we find a good agreement in between the experimental results and simulations.  相似文献   

6.
The dynamics of optical switching in semiconductor microcavities in the strong coupling regime is studied by using time- and spatially resolved spectroscopy. The switching is triggered by polarized short pulses which create spin bullets of high polariton density. The spin packets travel with speeds of the order of 10(6) m/s due to the ballistic propagation and drift of exciton polaritons from high to low density areas. The speed is controlled by the angle of incidence of the excitation beams, which changes the polariton group velocity.  相似文献   

7.
The degree of circular polarization ( Weierstrass p ) of the nonlinear emission in semiconductor microcavities is controlled by changing the exciton-cavity detuning. The polariton relaxation towards K approximately 0 cavitylike states is governed by final-state stimulated scattering. The helicity of the emission is selected due to the lifting of the degeneracy of the +/-1 spin levels at K approximately 0. At short times after a pulsed excitation Weierstrass p reaches very large values, either positive or negative, as a result of stimulated scattering to the spin level of lowest energy (+1/-1 spin for positive/negative detuning).  相似文献   

8.
New effects of self-organization and polarization pattern formation in semiconductor microcavities, operating in the nonlinear regime, are predicted and theoretically analyzed. We show that a spatially inhomogeneous elliptically polarized optical cw pump leads to the formation of a strongly circularly polarized ring in real space. This effect is due to the polarization multistability of cavity polaritons which was recently predicted. The possible switching between different stable configurations allows the realization of a localized spin memory element, suitable for an optical data storage device.  相似文献   

9.
We numerically investigate the quality factors of two-dimensional (2D) photonic crystal (PC) microcavities using an auxiliary differential equations (ADE) technique in the context of finite-difference time-domain (FDTD) method. The microcavities are formed by point defects in the air hole lattice hexagonally patterned in ZnO (zinc oxide) matrix. The quality factors of these microcavities are limited primarily by the absorption of the background dielectric. We show that the ratio between the quality factors of microcavities in lossy and lossless background dielectric depends on the overlap between the field of cavity modes and the absorbing background dielectric in addition to the magnitude of absorption. These results will be helpful when designing and optimizing photonic crystal microcavities formed in lossy medium.  相似文献   

10.
An overview is given of the current research trends in the physics of exciton-polaritons in microcavities. Potential applications of the Bose–Einstein condensation and superfluidity of exciton-polaritons are discussed. The perspectives for the realization of polariton lasers, polariton spin transistors and polarization modulators are presented. PACS 78.67.-n; 71.36.+c; 42.55.Sa; 42.25.Kb  相似文献   

11.
Time-resolved Kerr (Faraday) rotation experiments allow for the observation of polariton spin beats in both InGaAs and CdMnTe quantum well (QW) microcavities. The existence of these beats is an unambiguous manifestation of the coherent energy exchange between exciton and photon components of polariton states created by a circularly polarized and spectrally wide femtosecond laser pulse. The polariton states are also shown to be split into a linearly polarized doublet. This splitting is responsible for the polarization transfer between linearly and circularly polarized states. In a highest-quality sample, the resulting spin dynamics could be detected.  相似文献   

12.
13.
We review the progress and main challenges in implementing large-scale quantum computing by optical control of electron spins in quantum dots (QDs). Relevant systems include self-assembled QDs of III–V or II–VI compound semiconductors (such as InGaAs and CdSe), monolayer fluctuation QDs in compound semiconductor quantum wells, and impurity centres in solids, such as P-donors in silicon and nitrogen-vacancy centres in diamond. The decoherence of the electron spin qubits is discussed and various schemes for countering the decoherence problem are reviewed. We put forward designs of local nodes consisting of a few qubits which can be individually addressed and controlled. Remotely separated local nodes are connected by photonic structures (microcavities and waveguides) to form a large-scale distributed quantum system or a quantum network. The operation of the quantum network consists of optical control of a single electron spin, coupling of two spins in a local nodes, optically controlled quantum interfacing between stationary spin qubits in QDs and flying photon qubits in waveguides, rapid initialization of spin qubits and qubit-specific single-shot non-demolition quantum measurement. The rapid qubit initialization may be realized by selectively enhancing certain entropy dumping channels via phonon or photon baths. The single-shot quantum measurement may be in situ implemented through the integrated photonic network. The relevance of quantum non-demolition measurement to large-scale quantum computation is discussed. To illustrate the feasibility and demand, the resources are estimated for the benchmark problem of factorizing 15 with Shor's algorithm.  相似文献   

14.
There are many important works about the construction of universal quantum logic gates which are key elements in quantum computation. However, most of them focus on quantum transformations on the same degree of freedom (DOF) of quantum systems. We propose a CNOT gate performed on the polarization DOF and spatial mode DOF of one photon system assisted by a quantum dot in double-side optical microcavities. This hyper CNOT gate is implemented by using spin selective photon reflection from the cavity, without auxiliary spatial modes or polarization modes. This interface can also be used to construct a hyper photonic Bell-state analyzer. The high fidelities of the hyper CNOT gates may be achieved with low side leakage and cavity loss.  相似文献   

15.
Different from conventional three-dimensional confined microcavity fabrication method in which micropillar microcavities were obtained through the etching of planar semicoductor microcavities, we adopted the conformal coverage to fabricate two-dimensional arrays of quasi three-dimensional confined optical microcavities providing both vertical and lateral optical confinement by the distributed Bragg reflectors (DBRs). Our microcavity samples were directly deposited on the patterned substrates with two-dimensional arrays of air holes. The SEM and cross-section TEM images show that the periodicity of the patterned substrate was still kept after deposition while the growth of DBRs along the sidewalls occurred simultaneously, which provided the transverse optical confinement. In order to probe the optical modes of this kind of microcavities, room temperature photoluminescence signals from prepared microcavities were detected. Three resonant modes were presented and exhibited obvious angular dependence. We attributed these phenomena to quantization of the in-plane wave vector components confined by lateral DBRs.  相似文献   

16.
有机吸附物对多孔硅微腔发光的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
理论上,采用Bruggeman有效介质近似,研究了有机吸附物对多孔硅微腔的折射率及其光致发光谱的影响.实验上,采用计算机控制的电化学腐蚀法制备了多孔硅微腔样品,并利用机械泵油的蒸气分子与该微腔样品进行相互作用.研究发现,多孔硅微腔发射的窄化光致发光谱对泵油蒸气分子的吸附与脱附很敏感,与之伴随的是该窄化光致发光谱发生明显的峰位移动(可达71nm)和强度变化.结合Bruggeman近似和表面态对多孔硅发光的影响,对实验结果进行了定性解释.实验结果与理论模拟结果符合较好. 关键词: Bruggeman近似 吸附物 多孔硅微腔 光致发光谱  相似文献   

17.
Fussell DP  Dignam MM 《Optics letters》2007,32(11):1527-1529
We examine spontaneous emission and photon dynamics in a microcavity coupled to a coupled-resonator optical waveguide (CROW) in a photonic crystal. We present an efficient tight-binding approach to obtain the Green tensor in large, arbitrary systems of coupled microcavities. We use this approach to examine spontaneous emission when the microcavity is strongly coupled to the CROW at the band center and band edge. We confirm the validity of weak-coupling theories for microcavities resonant at band center and obtain strong peak splitting in the previously inaccessible case of band-edge coupled structures.  相似文献   

18.
We have realized distributed Bragg reflectors and microcavities with a remarkable optical quality (Rmax.=99.5% at 850 nm, FWHM=5 nm at 772 nm) with low doped p-type silicon. This is due to a strong decrease of the porous Si/bulk Si interface roughness that was obtained by low-temperature anodization. The properties of porous silicon microcavities are investigated by photoluminescence and reflection measurements. We also have filled porous silicon with Rhodamine 800 dye. The spontaneous emission spectrum of the optically excited Rhodamine 800 is drastically modified by microcavity effect: the peak emission intensity is increased, the line width is narrowed. The results demonstrate that using all porous silicon or dye-filled microcavities provides new possibilities to improve the properties of photonic devices.  相似文献   

19.
Owing to the unique optical properties high-Q photonic crystal nanobeam microcavities have been demonstrated in a variety of materials. In this paper the design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities is investigated using the three-dimensional plane-wave expansion method and finite-difference time-domain method. We first discuss the design of high-Q nanobeam microcavities in silicon-on-insulator, after which the polymer is introduced into the air void to form the hybrid structures. Quality factor as high as 1 × 104 has been obtained for our silicon-polymer hybrid nanobeam microcavities without exhaustive parameter examination. In addition the field distribution of resonant mode can be tuned to largely overlap with polymer materials. Because of the overwhelmingly large Kerr nonlinearity of polymer over silicon, the application in all-optical switching is presented by studying the shift of the resonant frequency on the change of refractive index of polymer. The minimum switching intensity of only 0.37 GW/cm2 is extracted for our high-Q hybrid microcavities and the corresponding single pulse energy is also discussed according to the pumping methods. The total switching time is expected to be restricted by the photon lifetime in cavity due to the ultrafast response speed of polymer. Our silicon-polymer hybrid nanobeam microcavities show great promise in constructing small-sized all-optical devices or circuits with advantages of possessing low-power and ultrafast speed simultaneously.  相似文献   

20.
Our recent research on surface mode optical microcavities based on two-dimensional photonic crystals (PhCs) was reviewed in this paper. We presented the design, fabrication and characterization of high quality (Q) factor surface mode microcavities. Realizations of these PhCs were based on both amorphous silicon-on-insulator (SOI) structures and crystalline SOI structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号