首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Initiation of failure by yielding and/or fracture depends on the magnitude of the distortion and dilatation of material elements. According to the strain energy density theory (SED), failure is assumed to initiate at the site of the local maximum of maxima [(dW/dV)maxmax]L by yielding and the maximum of minima [(dW/dV)maxmin]L by fracture. The fracture is assumed to start from point L where [(dW/dV)maxmin]L appears and tends toward G where the global maximum of dW/dV minima appears, denoted by [(dW/dV)maxmin]G. The distance l between L and G along the anticipated crack trajectory is an indication of failure instability of the system by fracture. If l is sufficiently large and [(dW/dV)maxmin]L exceeds the threshold, fracture initiation could lead to global failure. The local and global failure instability of a composite structural component is studied by application of the strain energy density theory. The depicted configuration is that of a panel with a circular hole reinforced by two side strips made of different material. The case of two symmetric cracks emanating from the hole and normal to the applied uniaxial tensile stress is also analyzed. Results are displayed graphically to illustrate the geometry and dissimilar material properties influence the fracture instability behavior of the two examples.  相似文献   

2.
In this work the isoparametric shear spring element is applied to the stress and energy analysis of a center-crack panel reinforced by a rectangular patch. In this model, only transverse shears are assumed to prevail in the adhesive layer. The stresses and crack-tip stress intensity factors are obtained for reinforcement on both sides and one side of the panel, and are found to be in agreement with those obtained by previous authors using the triangular shear spring element.Crack stability that tends to vary with patch thickness is determined from the local and global maximum of the minimum strain energy density function denoted, respectively, as [(dW/dV)minmax]L at point L and [(dW/dV)minmax]G at point G. The distance l between L and G gives the prospective path of subcritical crack growth and its magnitude provides a measure of the degree of crack stability. A patched panel with small l tends to be more stable than that with large l. By increasing the patch thickness beyond a certain value, l can be contained within the patch such that failure, if initiated, will be highly localized. Such a behavior is exhibited. Numerical results are provided to support the foregoing conclusion.  相似文献   

3.
The ferrite and ferroelectric phase of magnetoelectroelastic (MEE) material can be selected and processed to control the macroscopic behavior of electron devices using continuum mechanics models. Once macro- and/or microdefects appear, the highly intensified magnetic and electric energy localization could alter the response significantly to change the design performance. Alignment of poling directions of piezomagnetic and piezoelectric materials can add to the complexity of the MEE material behavior to which this study will be concerned with.Appropriate balance of distortional and dilatational energy density is no longer obvious when a material possesses anisotropy and/or nonhomogeneity. An excess of the former could result in unwanted geometric change while the latter may lead to unexpected fracture initiation. Such information can be evaluated quantitatively from the stationary values of the energy density function dW/dV. The maxima and minima have been known to coincide, respectively, with possible locations of permanent shape change and crack initiation regardless of material and loading type. The direction of poling with respect to a line crack and the material microstructure described by the constitutive coefficients will be specified explicitly with reference to the applied magnetic field, electric field and mechanical stress, both normal and shear. The crack initiation load and direction could be predicted by finding the direction for which the volume change is the largest. In contrast to intuition, change in poling directions can influence the cracking behavior of MEE dramatically. This will be demonstrated by the numerical results for the BaTiO3–CoFe2O4 composite having different volume fractions where BaTiO3 and CoFe2O4 are, respectively, the inclusion and matrix.To be emphasized is that mode I and II crack behavior will not have the same definition as that in classical fracture mechanics where load and crack extension symmetry would coincide. A striking result is found for a mode II crack. By keeping the magnetic poling fixed, a reversal of electric poling changed the crack initiation angle from θ0=+80° to θ0=−80° using the line extending ahead of the crack as the reference. This effect is also sensitive to the distance from the crack tip. Displayed and discussed are results for r/a=10−4 and 10−1. Because the theory of magnetoelectroelasticity used in the analysis is based on the assumption of equilibrium where the influence of material microstructure is homogenized, the local space and temporal effects must be interpreted accordingly. Among them are the maximum values of (dW/dV)max and (dW/dV)min which refer to as possible sites of yielding and fracture. Since time and size are homogenized, it is implicitly understood that there is more time for yielding as compared to fracture being a more sudden process. This renders a higher dW/dV in contrast to that for fracture. Put it differently, a lower dW/dV with a shorter time for release could be more detrimental.  相似文献   

4.
5.
When the surface or interior of a solid undergoes curvature and/or material change, there results localized fluctuation of the energy density field depending on the type of loading. These fluctuations are related to changes in the distortion and dilatation of material elements that could lead to failure by yielding and/or fracture should their magnitude become sufficiently large. According to the strain energy density criterion, failure is assumed to initiate at site of local maximum of minimum strain energy density denoted by [(dW/dV)minmax]L and tends toward the global maximum of [(dW/dV)minmax]G. The distance l between these two stationary values of dW/dV at L and G provides an indication of failure instability. That is, large l corresponds to more wide spread failure while the opposite holds for small l.Specimens with three different geometries are analyzed; they consist of round shoulder, hole and edge notch. The loads are either bending or tension. As the severity of notch or hole curvature is varied, predicted failure path also altered from boundary to boundary or an interior point of the specimen. The narrowest section turns out to be most vulnerable. If the hole is filled with a material of higher modulus, it acts as a reinforcer such that failure site would be shifted away from the interface. In general, there prevails a trade off between l and [(dW/dV)minmax]L. The undesirable combination would be for l and [(dW/dV)minmax]L to increase simultaneously. Failure initiation and global instability would then likely occur in tandem. This corresponds to the bending of a specimen with round shoulders. A variety of other conditions are analyzed with results displayed graphically so that the ways with which load, geometry and material inhomogeneity affect the failure behavior of structural components with notches and holes could be better understood.  相似文献   

6.
The rate at which a solid deforms permanently depends on the load history, geometry and material properties. When a metal plate is compressed between two hardened rollers, its thickness reduces continuously if the material elements are deformed beyond their elastic limits. Those near the region of contact will experience more distortion as compared with those interior to the plate. This effect is analyzed incrementally in time by the theory of plasticity coupled with the strain energy density criterion. Failure is examined by assuming that the location of crack initiation coincides with the maximum of the minimum strain energy density function, (dW/dV)minmax, when reaching its critical value. This is found to occur at the center of the plate depending on the rate of deformation. An increase in plate thickness reduction without failure can be achieved by taking smaller loading steps. Displayed graphically are numerical results for five different load histories that provide useful insights into the rate dependent process of metal forming.  相似文献   

7.
Using the technique of Dimensional Analysis the phenomenon of crack closure is modelled using the concept of a contact stress intensity factor Kc. For constant amplitude loading, a simple expression, Kcmax = g(R) ΔK, is obtained without making idealized assumptions concerning crack tip behaviour. Further, by assuming that crack closure arises from the interaction of residual plasticity in the wake of the crack and crack tip compressive stresses, the function g(R) is shown to be constant for non-workhardening materials. This implies that any dependency of Kcmax on R must be attributed to the workhardening characteristic of the material. With Kc known, an “effective” stress intensity factor Ke may be calculated and incorporated into a crack growth law of the form da/dn = f(ΔKe). From analysis, it can be deduced that for a workhardening material, Kcmax will decrease as R increases and the effective stress intensity factor will increase. This means that the fatigue crack propagation rate will increase with R, in accordance with experimental observations.  相似文献   

8.
The motivation to examine physical events at even smaller size scale arises from the development of use-specific materials where information transfer from one micro- or macro-element to another could be pre-assigned. There is the growing belief that the cumulated macroscopic experiences could be related to those at the lower size scales. Otherwise, there serves little purpose to examine material behavior at the different scale levels. Size scale, however, is intimately associated with time, not to mention temperature. As the size and time scales are shifted, different physical events may be identified. Dislocations with the movements of atoms, shear and rotation of clusters of molecules with inhomogeneity of polycrystals; and yielding/fracture with bulk properties of continuum specimens. Piecemeal results at the different scale levels are vulnerable to the possibility that they may be incompatible. The attention should therefore be focused on a single formulation that has the characteristics of multiscaling in size and time. The fact that the task may be overwhelmingly difficult cannot be used as an excuse for ignoring the fundamental aspects of the problem.Local nonlinearity is smeared into a small zone ahead of the crack. A “restrain stress” is introduced to also account for cracking at the meso-scale.The major emphasis is placed on developing a model that could exhibit the evolution characteristics of change in cracking behavior due to size and speed. Material inhomogeneity is assumed to favor self-similar crack growth although this may not always be the case. For relatively high restrain stress, the possible nucleation of micro-, meso- and macro-crack can be distinguished near the crack tip region. This distinction quickly disappears after a small distance after which scaling is no longer possible. This character prevails for Mode I and II cracking at different speeds. Special efforts are made to confine discussions within the framework of assumed conditions. To be kept in mind are the words of Isaac Newton in the Fourth Regula Philosophandi:
Men are often led into error by the love of simplicity which disposes us to reduce things to few principles, and to conceive a greater simplicity in nature than there really isWe may learn something of the way in which nature operates from fact and observation; but if we conclude that it operates in such a manner, only because to our understanding that operates to be the best and simplest manner, we shall always go wrong.”––Isaac Newton

Article Outline

1. Introduction
2. Elastodynamic equations and moving coordinates
3. Moving crack with restrain stress zone
3.1. Mode I crack
3.2. Mode II crack
4. Strain energy density function
4.1. Mode I
4.2. Mode II
5. Conclusions
Acknowledgements
References

1. Introduction

Even though experimental observations could reveal atomic scale events, in principle, analytical predictions of atomic movements fall short of expectation by a wide margin. Classical dislocation models have shown to be inadequate by large scale computational schemes such as embedded atoms and molecular dynamics. Lacking in particular is a connection between interatomic (10−8 cm) processes and behavior on mesoscopic scale (10−4 cm) [1]. Relating microstructure entities to macroscopic properties may represent too wide of a gap. A finer scale range may be needed to understand the underlying physics. Segmentation in terms of lineal dimensions of 10−6–10−5, 10−5–10−3 and 10−3–10−2 cm may be required. They are referred to, respectively, as the micro-, meso- and macro-scale. Even though the atomistic simulation approach has gained wide acceptance in recent times, continuum mechanics remains as a power tool for modeling material behavior. Validity of the discrete and continuum approach at the different length scales has been discussed in [2 and 3].Material microstructure inhomogeneities such as lattice configurations, phase topologies, grain sizes, etc. suggest an uneven distribution of stored energy per unit volume. The size of the unit volume could be selected arbitrarily such as micro-, meso- or macroscopic. When the localized energy concentration level overcomes the microstructure integrity, a change of microstructure morphology could take place. This can be accompanied by a corresponding redistribution of the energy in the system. A unique correspondence between the material microstructure and energy density function is thus assumed [4]. Effects of material structure can be reflected by continuum mechanics in the constitutive relations as in [5 and 6] for piezoelectric materials.In what follows, the energy density packed in a narrow region of prospective crack nucleation sites, the width of this region will be used as a characteristic length parameter for analyzing the behavior of moving cracks in materials at the atomic, micro-, meso- and macroscopic scale level. Nonlinearity is confined to a zone local to the crack tip. The degree of nonlinearity can be adjusted by using two parameters (σ0,ℓ) or (τ0,ℓ) where σ0 and τ0 are referred to, respectively, as the stresses of “restraint” owing to the normal and shear action over a local zone of length ℓ. The physical interpretation of σ0 and τ0 should be distinguished from the “cohesive stress” and “yield stress” initiated by Barenblatt and Dugdale although the mathematics may be similar. The former has been regarded as intrinsic to the material microstructure (or interatomic force) while the latter is triggered by macroscopic external loading. Strictly speaking, they are both affected by the material microstructure and loading. The difference is that their pre-dominance occurs at different scale levels. Henceforth, the term restrain stress will be adopted. For simplicity, the stresses σ0 and τ0 will be taken as constants over the segment ℓ and they apply to the meso-scale range as well.

2. Elastodynamic equations and moving coordinates

Navier’s equation of motion is given by(1)in which u and f are displacement and body force vector, respectively. Let the body force equal to zero, and introduce dilatational displacement potential φ(x,y,t) and the distortional displacement potential ψ(x,y,t) such that(2)u=φ+×ψThis yields two wave equations as(3)where 2 is the Laplacian in x and y while dot represents time differentiation. The dilatational and shear wave speeds are denoted by cd and cs, respectively.For a system of coordinates moving with velocity v in the x-direction,(4)ξ=xvt, η=ythe potential function φ(x,y,t) and ψ(x,y,t) can be simplified to(5)φ=φ(ξ,η), ψ=ψ(ξ,η)Eq. (3) can thus be rewritten as(6)in which(7)In view of Eqs. (7), φ and ψ would depend on (ξ,η) as(8)φ(ξ,η)=Re[Fd)], ψ(ξ,η)=Im[Gs)]The arguments ζj(j=d,s) are complex:(9)ζj=ξ+iαjη for j=d,sThe stress and displacement components in terms of φ and ψ are given as(10)uy(ξ,η)=−Im[αdFd)+Gs)]The stresses are(11)σxy(ξ,η)=−μ Im[2αdFd)+(1+αs2)Gs)]σxx(ξ,η)=μ Re[(1−αs2+2αd2)Fd)+2αsGs)]σyy(ξ,η)=−μ Re[(1+αs2)Fd)+2αsGs)]with μ being the shear modulus of elasticity.

3. Moving crack with restrain stress zone

The local stress zone is introduced to represent nonlinearity; it can be normal or shear depending on whether the crack is under Mode I or Mode II loading. For Mode I, a uniform stress σ is applied at infinity while τ is for Mode II. The corresponding stress in the local zone of length ℓ are σ0 are τ0. They are shown in Fig. 1 for Mode I and Fig. 2 for Mode II. Assumed are the conditions in the Yoffé crack model. What occurs as positive at the leading crack edge, the negative is assumed to prevail at the trailing edge.  相似文献   

9.
This paper presents a study on the deformation of anisotropic fibrous porous media subjected to moistening by water in the liquid phase. The deformation of the medium is studied by applying the concept of effective stress. Given the structure of the medium, the displacement of the solid matrix is not taken into account with respect to the displacement of the liquid phase. The transport equations are derived from the model proposed by Narasimhan. The transport coefficients and the relation between the variation in apparent density and effective stress are obtained by test measurements. A numerical model has been established and applied for studying drip moistening of mineral wool samples capable or incapable of deformation.Nomenclature D mass diffusion coefficient [L2t–1] - e void fraction - g gravity acceleration [Lt–2] - J mass transfer density [ML–2t–1] - K hydraulic conductivity [Lt–1] - K s hydraulic conductivity of the solid phase [Lt–1] - K * hydraulic conductivity of the deformable porous medium [Lt–1] - P pressure of moistening liquid [ML–1 t–2] - S degree of saturation - t time [t] - V speed [Lt–1] - X horizontal coordinate [L] - Z vertical coordinate measured from the bottom of porous medium [L] - z z-coordinate [L] Greek Letters porosity - 1 total hydric potential [L] - g gas density [ML–3] - 1 liquid density [ML–3] - 0 apparent density [ML–3] - s density of the solid phase [ML–3] - density of the moist porous medium [ML–3] - external load [ML–1t–2] - effective stress [ML–1t–2] - bishop's parameter - matrix potential or capillary suction [L] Indices g gas - 1 moistening liquid - p direction perpendicular to fiber planes - s solid matrix - t direction parallel to fiber planes - v pore Exponent * movement of solid particles taken into account  相似文献   

10.
The fracture instability of a mechanical system is analyzed by the strain energy density theory. The local relative minima of the strain energy density function dW/dV referred to local coordinate systems at each point of the body are distinguished from the global minimum of dW/dV, G, which is referred to a fixed global coordinate system. Failure by fracture starts from the maximum of the local minima of dW/dV, L, and passes from point G. The distance l between L and G along the fracture trajectory is introduced as a length parameter to characterized the fracture instability of the system. Numerical results are obtained and discussed for a cracked plate with two symmetrical notches subjected to a monotonically rising tensile stress perpendicular to the crack axis.  相似文献   

11.
An experimental study of flow around a blade with a modified NACA 4418 profile was conducted in a water tunnel that also enables control of the cavitation conditions within it. Pressure, lift force, drag force and pitching moment acting on the blade were measured for different blade angles and cavitation numbers, respectively. Relationships between these parameters were elaborated and some of them are presented here in dimensionless form. The analysis of results confirmed that cavitation changes the pressure distribution significantly. As a consequence, lift force and pitching moment are reduced, and the drag force is increased. When the cavitation cloud covers one side of the blade and the flow becomes more and more vaporous, the drag force also begins to decrease. The cavity length is increased by increasing the blade angle and by decreasing thé cavitation number.List of symbols A (m2) blade area,B ·L - B (m) blade width - C D (–) drag coefficient,F D /(p d ·A) - C L (–) lift coefficient,F L /(P d ·A) - C M (–) pitching moment coefficient,M/(P d ·A ·L) - C p (–) pressure coefficient, (p-p r )/p d - F (N) force - L (m) blade length - M (Nm) pitching moment - p (Pa) local pressure on blade surface - p d (Pa) dynamic pressure, ·V 2/2 - p r (Pa) reference wall pressure at blade nose position if there would be no blade in the tunnel - p v (Pa) vapor pressure - p 1 (Pa) wall pressure 350 mm in front of thé blade axis - Re (–) Reynolds number,V ·L/v - V (m/s) mean velocity of flow in the tunnel - x (m) Cartesian coordinate along thé blade profile cord - x c (m) cavity length,x-coordinate of cavity end - (°) blade angle - v (m2/s2) kinematic viscosity - (kg/m3) fluid density - (–) cavitation number, (p r p v )/p d - (°) angle of tangent to thé blade profile contour  相似文献   

12.
An analysis of examining the validity of a unified approach proposed earlier by the authors for the fatigue crack propagation (FCP) of engineering materials to include PMMA and PVC is described. The proposed formulation has been shown capable of characterizing a diversified range of materials with a master FCP diagram and expressed as da/dN = A(ΔG)m/(Gc − Gmax).An experimental program is undertaken to measure fatigue growth rate with the standard compact tension specimen. The FCP results are for the first instance analysed for each material using the unified formulation. The validity of the formulation for producing a master FCP diagram is verified when the fatigue crack growth rates of the materials are successfully characterized in one master diagram, yielding an excellent coefficient of correlation of 0.993. No such success is attained using a number of conventional FCP laws considered most acceptable to characterize polymeric materials.  相似文献   

13.
The fracturing of glass and tearing of rubber both involve the separation of material but their crack growth behavior can be quite different, particularly with reference to the distance of separation of the adjacent planes of material and the speed at which they separate. Relatively speaking, the former and the latter are recognized, respectively, to be fast and slow under normal conditions. Moreover, the crack tip radius of curvature in glass can be very sharp while that in the rubber can be very blunt. These changes in the geometric features of the crack or defect, however, have not been incorporated into the modeling of running cracks because the mathematical treatment makes use of the Galilean transformation where the crack opening distance or the change in the radius of curvature of the crack does not enter into the solution. Change in crack speed is accounted for only via the modulus of elasticity and mass density. For this simple reason, many of the dynamic features of the running crack have remained unexplained although speculations are not lacking. To begin with, the process of energy dissipation due to separation is affected by the microstructure of the material that distinguishes polycrystalline from amorphous form. Energy extracted from macroscopic reaches of a solid will travel to the atomic or smaller regions at different speeds at a given instance. It is not clear how many of the succeeding size scales should be included within a given time interval for an accurate prediction of the macroscopic dynamic crack characteristics. The minimum requirement would therefore necessitate the simultaneous treatment of two scales at the same time. This means that the analysis should capture the change in the macroscopic and microscopic features of a defect as it propagates. The discussion for a dual scale model has been invoked only very recently for a stationary crack. The objective of this work is to extend this effort to a crack running at constant speed beyond that of Rayleigh wave. Developed is a dual scale moving crack model containing microscopic damage ahead of a macroscopic crack with a gradual transition. This transitory region is referred to as the mesoscopic zone where the tractions prevail on the damaged portion of the material ahead of the original crack known as the restraining stresses, the magnitude of which depends on the geometry, material and loading. This damaged or restraining zone is not assumed arbitrarily nor assumed to be intrinsically a constant in the cohesive stress approach; it is determined for each step of crack advancement. For the range of micronotch bluntness with 0 < β < 30° and 0.2 σ/σ0 0.5, there prevails a nearly constant restraining zone size as the crack approaches the shear wave speed. Note that β is the half micronotch angle and the applied stress ratio is σ/σ0 with σ0 being the maximum of the restraining stress. For σ/σ0 equal to or less than 0.5, the macrocrack opening displacement COD is nearly constant and starts to decrease more quickly as the crack approaches the shear wave speed. For the present dual scale model where the normalized crack speed v/cs increases with decreasing with the one-half microcrack tip angle β. There prevails a limit of crack tip bluntness that corresponds to β 36° and v/cs 0.15. That is a crack cannot be maintained at a constant speed if the bluntness is increased beyond this limiting value. Such a feature is manifestation of the dependency of the restraining stress on crack velocity and the applied stress or the energy pumped into the system to maintain the crack at a constant velocity. More specifically, the transitory character from macro to micro is being determined as part of the unknown solution. Using the energy density function dW/dV as the indicator, plots are made in terms of the macrodistance ahead of the original crack while the microdefect bluntness can vary depending on the tip geometry. Such a generality has not been considered previously. The macro-dW/dV behavior with distance remains as the inverse r relation yielding a perfect hyperbola for the homogeneous material. This behavior is the same as the stationary crack. The micro-dW/dV relations are expressed in terms of a single undetermined parameter. Its evaluation is beyond the scope of this investigation although the qualitative behavior is expected to be similar to that for the stationary crack. To reiterate, what has been achieved as an objective is a model that accounts for the thickness of a running crack since the surface of separation representing damage at the macroscopic and microscopic scale is different. The transitory behavior from micro to macro is described by the state of affairs in the mesoscopic zone.  相似文献   

14.
Fix a strictly increasing right continuous with left limits function ${W: \mathbb{R} \to \mathbb{R}}Fix a strictly increasing right continuous with left limits function W: \mathbbR ? \mathbbR{W: \mathbb{R} \to \mathbb{R}} and a smooth function F: [l,r] ? \mathbb R{\Phi : [l,r] \to \mathbb R}, defined on some interval [l, r] of \mathbb R{\mathbb R}, such that 0 < b\leqq F¢\leqq b-1{0 < b\leqq \Phi'\leqq b^{-1}}. On the diffusive time scale, the evolution of the empirical density of exclusion processes with conductances given by W is described by the unique weak solution of the non-linear differential equation ?t r = (d/dx)(d/dW) F(r){\partial_t \rho = ({\rm d}/{\rm d}x)({\rm d}/{\rm d}W) \Phi(\rho)}. We also present some properties of the operator (d/dx)(d/dW).  相似文献   

15.
Zusammenfassung In der vorliegenden Arbeit wird ein neues Rotationsrheometer vorgestellt und über Messungen an zwei Polymethylmethacrylat-Formmassen berichtet. Bei dem Rheometer handelt es sich um ein Couette-Rheometer mit feststehendem Innenzylinder als Meßkörper. Der Meßkörper ist beidseitig eingespannt. In dem geschlossenen Meßraum können die Schmelzen bis zu einem Druck von 500 bar belastet werden.Der zeitliche Verlauf der Schubspannung in den Schmelzen wird in Abhängigkeit von Temperatur und Druck aufgezeichnet.
Summary A new type of rotational rheometer is described, and results for two samples of polymethylmethacrylate are reported. The rheometer consists of a Couette system with fixed inner cylinder, supported at both ends for torque measurements. Pressure may be varied up to 500 bar. Shear stresses have been recorded as a function of time, temperature and pressure.

Nomenklatur C [kp cm–2 s–1] Steigung der Anlaufkurve im Nullpunkt - D [kp cm rad–1] Direktionsmoment - E 0 [kcal mol–1] Aktivierungsenergie der Newtonschen Viskosität - G [kp cm–2] Schubmodul - G [—] Griffith-Zahl - l [mm] Länge des Meßkörpers - p [kp cm–2] Druck - R i [mm] Radius des Innenzylinders - R a [mm] Radius des Außenzylinders - t max [s] Zeit, bei der das Maximum in der Anlaufkurve auftritt - T [°C] Temperatur - 0 [cm2 kp–1] Druckkoeffizient der Newtonschen Viskosität - [s–1] Schergeschwindigkeit - 0 [kp s cm–2] Newtonsche Viskosität - (g cm2] Trägheitsmoment des Meßkörpers - v 0 [s–1] Eigenfrequenz des Meßsystems - max [kp cm–2] maximale Schubspannung - st [kp cm–2] stationäre Schubspannung Mit 7 Abbildungen und 1 Tabelle  相似文献   

16.
We prove that, if ${u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^N}We prove that, if u : W ì \mathbbRn ? \mathbbRN{u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^N} is a solution to the Dirichlet variational problem
minwòW F(x, w, Dw) dx     subject  to     w o u0  on  ?W,\mathop {\rm min}\limits_{w}\int_{\Omega} F(x, w, Dw)\,{\rm d}x \quad {\rm subject \, to} \quad w \equiv u_0\; {\rm on}\;\partial \Omega,  相似文献   

17.
Landslide generated impulse waves. 2. Hydrodynamic impact craters   总被引:4,自引:0,他引:4  
Landslide generated impulse waves were investigated in a two-dimensional physical laboratory model based on the generalized Froude similarity. Digital particle image velocimetry (PIV) was applied to the landslide impact and wave generation. Areas of interest up to 0.8 m by 0.8 m were investigated. PIV provided instantaneous velocity vector fields in a large area of interest and gave insight into the kinematics of the wave generation process. Differential estimates such as vorticity, divergence, and elongational and shear strain were extracted from the velocity vector fields. At high impact velocities flow separation occurred on the slide shoulder resulting in a hydrodynamic impact crater, whereas at low impact velocities no flow detachment was observed. The hydrodynamic impact craters may be distinguished into outward and backward collapsing impact craters. The maximum crater volume, which corresponds to the water displacement volume, exceeded the landslide volume by up to an order of magnitude. The water displacement caused by the landslide generated the first wave crest and the collapse of the air cavity followed by a run-up along the slide ramp issued the second wave crest. The extracted water displacement curves may replace the complex wave generation process in numerical models. The water displacement and displacement rate were described by multiple regressions of the following three dimensionless quantities: the slide Froude number, the relative slide volume, and the relative slide thickness. The slide Froude number was identified as the dominant parameter.List of symbols a wave amplitude (L) - b slide width (L) - c wave celerity (LT–1) - d g granulate grain diameter (L) - d p seeding particle diameter (L) - F slide Froude number - g gravitational acceleration (LT–2) - h stillwater depth (L) - H wave height (L) - l s slide length (L) - L wave length (L) - M magnification - m s slide mass (M) - n por slide porosity - Q d water displacement rate (L3) - Q D maximum water displacement rate (L3) - Q s maximum slide displacement rate - s slide thickness (L) - S relative slide thickness - t time after impact (T) - t D time of maximum water displacement volume (L3) - t qD time of maximum water displacement rate (L3) - t si slide impact duration (T) - t sd duration of subaqueous slide motion (T) - T wave period (T) - v velocity (LT–1) - v p particle velocity (LT–1) - v px streamwise horizontal component of particle velocity (LT–1) - v pz vertical component of particle velocity (LT–1) - v s slide centroid velocity at impact (LT–1) - V dimensionless slide volume - V d water displacement volume (L3) - V D maximum water displacement volume (L3) - V s slide volume (L3) - x streamwise coordinate (L) - z vertical coordinate (L) - slide impact angle (°) - bed friction angle (°) - x mean particle image x-displacement in interrogation window (L) - x random displacement x error (L) - tot total random velocity v error (LT–1) - xx streamwise horizontal elongational strain component (1/T) - xz shear strain component (1/T) - zx shear strain component (1/T) - zz vertical elongational strain component (1/T) - water surface displacement (L) - density (ML–3) - g granulate density (ML–3) - p particle density (ML–3) - s mean slide density (ML–3) - w water density (ML–3) - granulate internal friction angle (°) - y vorticity vector component (out-of-plane) (1/T)  相似文献   

18.
Two-phase flows of boiling water and steam in geothermal reservoirs satisfy a pair of conservation equations for mass and energy which can be combined to yield a hyperbolic wave equation for liquid saturation changes. Recent work has established that in the absence of conduction, the geothermal saturation equation is, under certain conditions, asymptotically identical with the Buckley-Leverett equation of oil recovery theory. Here we summarise this work and show that it may be extended to include conduction. In addition we show that the geothermal saturation wave speed is under all conditions formally identical with the Buckley-Leverett wave speed when the latter is written as the saturation derivative of a volumetric flow.Roman Letters C(P, S,q) geothermal saturation wave speed [ms–1] (14) - c t (P, S) two-phase compressibility [Pa–1] (10) - D(P, S) diffusivity [m s–2] (8) - E(P, S) energy density accumulation [J m–3] (3) - g gravitational acceleration (positive downwards) [ms–2] - h w (P),h w (P) specific enthalpies [J kg–1] - J M (P, S,P) mass flow [kg m–2 s–1] (5) - J E (P, S,P) energy flow [J m–2s–1] (5) - k absolute permeability (constant) [m2] - k w (S),k s (S) relative permeabilities of liquid and vapour phases - K formation thermal conductivity (constant) [Wm–1 K–1] - L lower sheetC<0 in flow plane - m, c gradient and intercept - M(P, S) mass density accumulation [kg m–3] (3) - O flow plane origin - P(x,t) pressure (primary dependent variable) [Pa] - q volume flow [ms–1] (6) - S(x, t) liquid saturation (primary dependent variable) - S *(x,t) normalised saturation (Appendix) - t time (primary independent variable) [s] - T temperature (degrees Kelvin) [K] - T sat(P) saturation line temperature [K] - TdT sat/dP saturation line temperature derivative [K Pa–1] (4) - T c ,T D convective and diffusive time constants [s] - u w (P),u s (P),u r (P) specific internal energies [J kg–1] - U upper sheetC > 0 in flow plane - U(x,t) shock velocity [m s–1] - x spatial position (primary independent variable) [m] - X representative length - x, y flow plane coordinates - z depth variable (+z vertically downwards) [m] Greek Letters P , S remainder terms [Pa s–1], [s–1] - double-valued saturation region in the flow plane - h =h s h w latent heat [J kg–1] - = w s density difference [kg m–3] - line envelope - =D K /D 0 diffusivity ratio - porosity (constant) - w (P), s (P), t (P, S) dynamic viscosities [Pa s] - v w (P),v s (P) kinematic viscosities [m2s–1] - v 0 =kh/KT kinematic viscosity constant [m2 s–1] - 0 =v 0 dynamic viscosity constant [m2 s–1] - w (P), s (P) density [kg m–3] Suffixes r rock matrix - s steam (vapour) - w water (liquid) - t total - av average - 0 without conduction - K with conduction  相似文献   

19.
The effects of pulsatile amplitude on sinusoidal transitional turbulent flows through a rigid pipe in the vicinity of a sharp‐edged mechanical ring‐type constriction have been studied numerically. Pulsatile flows were studied for transitional turbulent flow with Reynolds number (Re) of the order of 104, Womersley number (Nw) of the order of 50 with a corresponding Strouhal number (St) of the order of 0.04. The pulsatile flow considered is a sinusoidal flow with dimensionless amplitudes varying from 0.0 to 1.0. Transitional laminar and turbulent flow characteristics in an alternative manner within the pulsatile flow fields were observed and studied numerically. The flow characteristics were studied through the pulsatile contours of streamlines, vorticity, shear stress and isobars. It was observed that fluid accelerations tend to suppress the development of flow disturbances. All the instantaneous maximum values of turbulent kinetic energy, turbulent viscosity, turbulent shear stress are smaller during the acceleration phase when compared with those during deceleration period. Various parametric equations within a pulsatile cycle have also been formulated through numerical experimentations with different pulsatile amplitudes. In the vicinity of constrictions, the empirical relationships were obtained for the instantaneous flow rate (Q), the pressure gradient (dp/dz), the pressure loss (Ploss), the maximum velocity (Vmax), the maximum vorticity (ζmax), the maximum wall vorticity (ζw,max), the maximum shear stress (τmax) and the maximum wall shear stress (τw,max). Elliptic relation was observed between flow rate and pressure gradient. Quadratic relations were observed between flow rate and the pressure loss, the maximum values of shear stress, wall shear stress, turbulent kinematic energy and the turbulent viscosity. Linear relationships exist between the instantaneous flow rate and the maximum values of vorticity, wall vorticity and velocity. The time‐average axial pressure gradient and the time average pressure loss across the constriction were observed to increase linearly with the pulsatile amplitude. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
An experimental study on pulsating turbulent flow of sand-water suspension was carried out. The objective was to investigate the effect of pulsating flow parameters, such as, frequency and amplitude on the critical velocity, the pressure drop per unit length of pipeline and hence the energy requirements for hydraulic transportation of a unit mass of solids. The apparatus was constructed as a closed loop of 11.4 m length and 3.3 cm inner diameter of steel tubing. Solid volumetric concentrations of up to 20% were used in turbulent flow at a mean Reynolds number of 33,000–82,000. Pulsation was generated using compressed air in a controlled pulsation unit. Frequencies of 0.1–1.0 Hz and amplitude ratios of up to 30% were used. Instantaneous pressure drop and flow rate curves were digitized to calculate the energy dissipation associated with pulsation. The critical velocity in pulsating flow was found to be less than that for the corresponding steady flow at the same volumetric concentration. Energy dissipation for pulsating flow was found to be a function of both frequency and amplitude of pulsation. A possible energy saving was indicated at frequencies of 0.4–0.8 Hz and moderate amplitudes ratios of less than 25%.List of symbols A cross-section area of the tube (m2) - C D drag coefficient of sand particles - C v volumetric concentration (%) - D inner diameter of test-section pipe (m) - F frequency (Hz) - f friction factor - g gravitational constant (m/s2) - J energy dissipation of suspension (W/m)/(kg/s) - J p energy dissipation of pulsating suspension (W/m)/(kg/s) - J s energy dissipation of steady component of suspension (W/m)/(kg/s) - J w energy dissipation of pure water (W/m)/(kg/s) - L length of test-section (m) - m mass flow rate (kg/s) - P pressure drop in test-section (N/m2) - S specific gravity of sand - V instantaneous flow velocity (m/s) - V c steady flow critical velocity (m/s) - V cp pulsating flow critical velocity (m/s) - V F settling velocity of particles (m/s) - V s steady component of mean flow velocity (m/s) - dynamic viscosity (g/cm sec) - m mean density of suspension (kg/m3) - angular velocity (rad/sec) - amplitude ratio (V — V s)/V - nondimentional factor equal to - nondimentional factor equal to (VV s/V - NI nondimentional factor equal to (V 2C d/g D(S – 1)) - Re Reynolds number (V 2C d/C v g D(S – 1))  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号