首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the consensus problem of uncertain nonlinear multi‐agent systems is investigated via reliable control in the presence of probabilistic time‐varying delay. First, the communication topology among the agents is assumed to be directed and fixed. Second, by introducing a stochastic variable which satisfies Bernoulli distribution, the information of probabilistic time‐varying delay is equivalently transformed into the deterministic time‐varying delay with stochastic parameters. Third, by using Laplacian matrix properties, the consensus problem is converted into the conventional stability problem of the closed‐loop system. The main objective of this paper is to design a state feedback reliable controller such that for all admissible uncertainties as well as actuator failure cases, the resulting closed‐loop system is robustly stable in the sense of mean‐square. For this purpose, through construction of a suitable Lyapunov–Krasovskii functional containing four integral terms and utilization of Kronecker product properties along with the matrix inequality techniques, a new set of delay‐dependent consensus stabilizability conditions for the closed‐loop system is obtained. Based on these conditions, the desired reliable controller is designed in terms of linear matrix inequalities which can be easily solved by using any of the effective optimization algorithms. Moreover, a numerical example and its simulations are included to demonstrate the feasibility and effectiveness of the proposed control design scheme. © 2016 Wiley Periodicals, Inc. Complexity 21: 138–150, 2016  相似文献   

2.
This article examines the reliable L2 – L control design problem for a class of continuous‐time linear systems subject to external disturbances and mixed actuator failures via input delay approach. Also, due to the occurrence of nonlinear circumstances in the control input, a more generalized and practical actuator fault model containing both linear and nonlinear terms is constructed to the addressed control system. Our attention is focused on the design of the robust state feedback reliable sampled‐data controller that guarantees the robust asymptotic stability of the resulting closed‐loop system with an L2 – L prescribed performance level γ > 0, for all the possible actuator failure cases. For this purpose, by constructing an appropriate Lyapunov–Krasovskii functional (LKF) and utilizing few integral inequality techniques, some novel sufficient stabilization conditions in terms of linear matrix inequalities (LMIs) are established for the considered system. Moreover, the established stabilizability conditions pave the way for designing the robust reliable sampled‐data controller as the solution to a set of LMIs. Finally, as an example, a wheeled mobile robot trailer model is considered to illustrate the effectiveness of the proposed control design scheme. © 2016 Wiley Periodicals, Inc. Complexity 21: 309–319, 2016  相似文献   

3.
This article deals with the problem of synchronization of fractional‐order memristor‐based BAM neural networks (FMBNNs) with time‐delay. We investigate the sufficient conditions for adaptive synchronization of FMBNNs with fractional‐order 0 < α < 1. The analysis is based on suitable Lyapunov functional, differential inclusions theory, and master‐slave synchronization setup. We extend the analysis to provide some useful criteria to ensure the finite‐time synchronization of FMBNNs with fractional‐order 1 < α < 2, using Mittag‐Leffler functions, Laplace transform, and linear feedback control techniques. Numerical simulations with two numerical examples are given to validate our theoretical results. Presence of time‐delay and fractional‐order in the model shows interesting dynamics. © 2016 Wiley Periodicals, Inc. Complexity 21: 412–426, 2016  相似文献   

4.
Wei Shen  Xiaoyu Su 《Complexity》2016,21(Z2):623-634
This article is concerned with observer and controller design for networked control systems, where the considered plant refers to a class of discrete‐time communication delay Markovian jump systems. In the study, random packet losses and output quantization are considered simultaneously. The packet losses considered here includes sensor to controller and controller to actuator sides, which are modeled as two Bernoulli distributed white sequences, respectively. An observer‐based control scheme is developed to stabilize the closed‐loop systems. Finally, an illustrative example is provided to show the applicability of the proposed control method. © 2016 Wiley Periodicals, Inc. Complexity 21: 623–634, 2016  相似文献   

5.
6.
This article deals with the problem of nonfragile H output tracking control for a kind of singular Markovian jump systems with time‐varying delays, parameter uncertainties, network‐induced signal transmission delays, and data packet dropouts. The main objective is to design mode‐dependent state‐feedback controller under controller gain perturbations and bounded modes transition rates such that the output of the closed‐loop networked control system tracks the output of a given reference system with the required H output tracking performance. By constructing a more multiple stochastic Lyapunov–Krasovskii functional, the novel mode‐dependent and delay‐dependent conditions are obtained to guarantee the augmented output tracking closed‐loop system is not only stochastically admissible but also satisfies a prescribed H‐norm level for all signal transmission delays, data packet dropouts, and admissible uncertainties. Then, the desired state‐feedback controller parameters are determined by solving a set of strict linear matrix inequalities. A simple production system example and two numerical examples are used to verify the effectiveness and usefulness of the proposed methods. © 2015 Wiley Periodicals, Inc. Complexity 21: 396–411, 2016  相似文献   

7.
A nonlinear matrix inequality is derived as a stabilizability condition of linear uncertain time‐delay systems. This inequality is seen as a less conservative one as well as efficient for numerical computation than the existing results as seen when solving by cone‐complementary algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This article deals with the state estimation problem of memristor‐based recurrent neural networks (MRNNs) with time‐varying delay based on passivity theory. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time delay, the dynamics of the estimation error is passive from the control input to the output error. Based on the Lyapunov–Krasovskii functional (LKF) involving proper triple integral terms, convex combination technique, and reciprocal convex technique, a delay‐dependent state estimation of MRNNs with time‐varying delay is established in terms of linear matrix inequalities (LMIs). The information about the neuron activation functions and lower bound of the time‐varying delays is fully used in the LKF. Then, the desired estimator gain matrix is accomplished by solving LMIs. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed theoretical results. © 2013 Wiley Periodicals, Inc. Complexity 19: 32–43, 2014  相似文献   

9.
This article presents an adaptive sliding mode control (SMC) scheme for the stabilization problem of uncertain time‐delay chaotic systems with input dead‐zone nonlinearity. The algorithm is based on SMC, adaptive control, and linear matrix inequality technique. Using Lyapunov stability theorem, the proposed control scheme guarantees the stability of overall closed‐loop uncertain time‐delay chaotic system with input dead‐zone nonlinearity. It is shown that the state trajectories converge to zero asymptotically in the presence of input dead‐zone nonlinearity, time‐delays, nonlinear real‐valued functions, parameter uncertainties, and external disturbances simultaneously. The selection of sliding surface and the design of control law are two important issues, which have been addressed. Moreover, the knowledge of upper bound of uncertainties is not required. The reaching phase and chattering phenomenon are eliminated. Simulation results demonstrate the effectiveness and robustness of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 13–20, 2016  相似文献   

10.
In this article, based on sampled‐data approach, a new robust state feedback reliable controller design for a class of Takagi–Sugeno fuzzy systems is presented. Different from the existing fault models for reliable controller, a novel generalized actuator fault model is proposed. In particular, the implemented fault model consists of both linear and nonlinear components. Consequently, by employing input‐delay approach, the sampled‐data system is equivalently transformed into a continuous‐time system with a variable time delay. The main objective is to design a suitable reliable sampled‐data state feedback controller guaranteeing the asymptotic stability of the resulting closed‐loop fuzzy system. For this purpose, using Lyapunov stability theory together with Wirtinger‐based double integral inequality, some new delay‐dependent stabilization conditions in terms of linear matrix inequalities are established to determine the underlying system's stability and to achieve the desired control performance. Finally, to show the advantages and effectiveness of the developed control method, numerical simulations are carried out on two practical models. © 2016 Wiley Periodicals, Inc. Complexity 21: 518–529, 2016  相似文献   

11.
This study examines finite‐time synchronization for a class of N‐coupled complex partial differential systems (PDSs) with time‐varying delay. The problem of finite‐time synchronization for coupled drive‐response PDSs with time‐varying delay is similarly considered. The synchronization error dynamic of the PDSs is defined in the q‐dimensional spatial domain. We construct a feedback controller to achieve finite‐time synchronization. Sufficient conditions are derived by using the Lyapunov‐Krasoviskii stability approach and inequalities technology to ensure that the proposed networks achieve synchronization in finite time. The proposed systems demonstrate extensive application. Finally, an example is used to verify the theoretical results.  相似文献   

12.
This article investigates the stabilization and control problems for a general active fault‐tolerant control system (AFTCS) in a stochastic framework. The novelty of the research lies in utilizing uncertain nonhomogeneous Markovian structures to take account for the imperfect fault detection and diagnosis (FDD) algorithms of the AFTCS. The underlying AFTCS is supposed to be modeled by two random processes of Markov type; one characterizing the system fault process and the other describing the FDD process. It is assumed that the FDD algorithm is imperfect and provides inaccurate Markovian parameters for the FDD process. Specifically, it provides uncertain transition rates (TRs); the TRs that lie in an interval without any particular structures. This framework is more consistent with real‐world applications to accommodate different types of faults. It is more general than the previously developed AFTCSs because of eliminating the need for an accurate estimation of the fault process. To solve the stabilizability and the controller design problems of this AFTCS, the whole system is viewed as an uncertain nonhomogeneous Markovian jump linear system (NHMJLS) with time‐varying and uncertain specifications. Based on the multiple and stochastic Lyapunov function for the NHMJLS, first a sufficient condition is obtained to analyze the system stabilizability and then, the controller gains are synthesized. Unlike the previous fault‐tolerant controllers, the proposed robust controller only needs to access the FDD process, besides it is easily obtainable through the existing optimization techniques. It is successfully tested on a practical inverted pendulum controlled by a fault‐prone DC motor. © 2016 Wiley Periodicals, Inc. Complexity 21: 318–329, 2016  相似文献   

13.
The problem of passivity analysis for stochastic neural networks with Markovian jumping parameters and interval time‐varying delays is investigated in this article. By constructing a novel Lyapunov–Krasovskii functional based on the complete delay‐decomposing idea and using improved free‐weighting matrix method, some improved delay‐dependent passivity criteria are established in terms of linear matrix inequalities. Numerical examples are also given to show the effectiveness of the proposed methods. © 2015 Wiley Periodicals, Inc. Complexity 21: 167–179, 2016  相似文献   

14.
This article is concerned with the problem of pinning outer synchronization between two complex delayed dynamical networks via adaptive intermittent control. At first, a general model of hybrid‐coupled dynamical network with time‐varying internal delay and time‐varying coupling delay is given. Then, an aperiodically adaptive intermittent pinning‐control strategy is introduced to drive two such delayed dynamical networks to achieve outer synchronization. Some sufficient conditions to guarantee global outer‐synchronization are derived by constructing a novel piecewise Lyapunov function and utilizing stability analytical method. Moreover, a simple pinned‐node selection scheme determining what kinds of nodes should be pinned first is provided. It is noted that the adaptive pinning control type is aperiodically intermittent, where both control period and control width are non‐fixed. Finally, a numerical example is given to illustrate the validity of the theoretical results. © 2016 Wiley Periodicals, Inc. Complexity 21: 593–605, 2016  相似文献   

15.
In this work, a new pointwise source reconstruction method is proposed. From a single pair of boundary measurements, we want to completely characterize the unknown set of pointwise sources, namely, the number of sources and their locations and intensities. The idea is to rewrite the inverse source problem as an optimization problem, where a Kohn‐Vogelius type functional is minimized with respect to a set of admissible pointwise sources. The resulting second‐order reconstruction algorithm is non‐iterative and thus very robust with respect to noisy data. Finally, in order to show the effectiveness of the devised reconstruction algorithm, some numerical experiments into two spatial dimensions are presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This article investigates the delay‐dependent robust dissipative sampled‐data control problem for a class of uncertain nonlinear systems with both differentiable and non‐differentiable time‐varying delays. The main purpose of this article is to design a retarded robust control law such that the resulting closed‐loop system is strictly (Q, S, R)‐dissipative. By introducing a suitable Lyapunov–Krasovskii functional and using free weighting matrix approach, some sufficient conditions for the solvability of the addressed problem are derived in terms of linear matrix inequalities. From the obtained dissipative result, we deduce four cases namely, H performance, passivity performance, mixed H, and passivity performance and sector bounded performance of the considered system. From the obtained result, it is concluded that based on the passivity performance it is possible to obtain the controller with less control effort, and also the minimum H performance and the maximum allowable delay for achieving stabilization conditions can be obtained via the mixed H and passivity control law. Finally, simulation studies based on aircraft control system are performed to verify the effectiveness of the proposed strategy. © 2015 Wiley Periodicals, Inc. Complexity 21: 142–154, 2016  相似文献   

17.
This article reports on an investigation into robust guaranteed cost control (GCC) for uncertain switched neutral systems (USNSs) with interval time‐varying mixed delays and nonlinear perturbations via dynamic output feedback. Delay‐dependent sufficient conditions are suggested to guarantee the robust exponential stability and to obtain robust GCC for USNSs using the average dwell time approach and the piecewise Lyapunov function technique in terms of a set of linear matrix inequalities. The problem of uncertainty in the system model is solved by deploying the Yakubovich lemma. Lastly, two examples (i.e., a numerical example and the water‐quality dynamic model for the Nile River) are given to verify the efficiency of the propounded theories. © 2016 Wiley Periodicals, Inc. Complexity 21: 555–578, 2016  相似文献   

18.
This article deals with the problem of robust stochastic asymptotic stability for a class of uncertain stochastic neural networks with distributed delay and multiple time‐varying delays. It is noted that the reciprocally convex approach has been intensively used in stability analysis for time‐delay systems in the past few years. We will extend the approach from deterministic time‐delay systems to stochastic time‐delay systems. And based on the new technique dealing with matrix cross‐product and multiple‐interval‐dependent Lyapunov–Krasovskii functional, some novel delay‐dependent stability criteria with less conservatism and less decision variables for the addressed system are derived in terms of linear matrix inequalities. At last, several numerical examples are given to show the effectiveness of the results. © 2014 Wiley Periodicals, Inc. Complexity 21: 147–162, 2015  相似文献   

19.
Finite‐region stability (FRS), a generalization of finite‐time stability, has been used to analyze the transient behavior of discrete two‐dimensional (2‐D) systems. In this paper, we consider the problem of FRS for discrete 2‐D Roesser models via dynamic output feedback. First, a sufficient condition is given to design the dynamic output feedback controller with a state feedback‐observer structure, which ensures the closed‐loop system FRS. Then, this condition is reducible to a condition that is solvable by linear matrix inequalities. Finally, viable experimental results are demonstrated by an illustrative example.  相似文献   

20.
In this article, a partially delay‐dependent controller is designed to analyze the guaranteed performance analysis of a class of uncertain discrete‐time systems with time‐varying delays. By constructing suitable Lyapunov–Krasovskii Functional (LKF), sufficient conditions are derived to ensure the system to be robustly stochastically stable in mean square sense by using Wirtinger‐based inequality and convex reciprocal lemma. The proper cost function is chosen to guarantee an adequate level of performance. The derived conditions are expressed in terms of linear matrix inequalities (LMIs) which can be easily solved by LMI Toolbox in MATLAB. Further, the advantage of employing the obtained results is illustrated via numerical examples. © 2016 Wiley Periodicals, Inc. Complexity 21: 113–122, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号