首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report, we demonstrate a versatile method for the immobilization and patterning of unmodified carbohydrates onto glass substrates. The method employs a novel self-assembled monolayer to present photoactive phthalimide chromophores at the air-monolayer interface. Upon exposure to UV radiation, the phthalimide end-groups graft to surface-adsorbed carbohydrates, presumably by a hydrogen abstraction mechanism followed by radical recombination to form a covalent bond. Immobilized carbohydrate thin films are evidenced by fluorescence, ellipsometry and contact-angle measurements. Surface micropatterns of mono-, oligo-, and polysaccharides are generated by exposure through a contact photomask and are visualized by condensing water onto the surface. The efficiency of covalent coupling is dependent on the thermodynamic state of the surface. The amount of surface-grafted carbohydrate is enhanced when carbohydrate surface interactions are increased by the incorporation of amine-terminated molecules into the monolayer. Glass substrates modified with mixed monolayers of this nature are used to construct carbohydrate microarrays by spotting the carbohydrates with a robot and subsequently illuminating them with UV light to covalently link the carbohydrates. Surface-immobilized polysaccharides display well-defined antigenic determinants for antibody recognition. We demonstrate, therefore, that this novel technology combines the ability to create carbohydrate microarrays using the current state-of-the-art technology of robotic microspotting and the ability to control the shape of immobilized carbohydrate patterns with a spatial resolution defined by the UV wavelength and a shape defined by a photomask.  相似文献   

2.
During drying of droplets of suspensions, several flow regimes contribute to the radial flow of powder to the periphery to leave a pile-up of powder at the rim. It is shown that the shape of the droplet residues can be controlled both by restricting evaporation and by combining high and low boiling point solvents which modify particle flows and produce a range of droplet residues varying from a concave "doughnut" shape, sometimes with a central hole, to a convex dome shape. Addition of formamide to aqueous suspensions is shown to affect powder deposition by setting up a Marangoni flow rather than by reducing evaporation at the periphery. The results find direct application in thick-film combinatorial printing of ceramics to form small disks by droplet drying.  相似文献   

3.
Soft PVC was obtained by using a new plasticizer, based on cardanol, a renewable resource characterized by chemical and physical properties very close to those of diethylhexyl phthalate (DEHP). Cardanol acetate (CA) was obtained by solvent free esterification of cardanol, and used as secondary plasticizer, by partial substitution of DEHP in soft PVC formulations. Ageing tests were performed in order to study the stability of properties of the soft PVC formulations related to plasticizer diffusion. Tensile properties and hardness changes were used to monitor the macroscopic effects of plasticizer diffusion. Soft PVC obtained by partial substitution of DEHP by CA showed a significant modification of mechanical properties related to a higher plasticizer evaporation during ageing tests. Migration tests confirmed that CA is characterized by a higher diffusivity in soft PVC compared to DEHP.  相似文献   

4.
Walther ME  Wenger OS 《Inorganic chemistry》2011,50(21):10901-10907
A molecular dyad was synthesized in which a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer and a phenothiazine redox partner are bridged by a sequence of tetramethoxybenzene, p-dimethoxybenzene, and p-xylene units. Hole transfer from the oxidized metal complex to the phenothiazine was triggered using a flash-quench technique and investigated by transient absorption spectroscopy. Optical spectroscopic and electrochemical experiments performed on a suitable reference molecule in addition to the above-mentioned dyad lead to the conclusion that hole transfer from Ru(bpy)(3)(3+) to phenothiazine proceeds through a sequence of hopping and tunneling steps: Initial hole hopping from Ru(bpy)(3)(3+) to the easily oxidizable tetramethoxybenzene unit is followed by tunneling through the barrier imposed by the p-dimethoxybenzene and p-xylene spacers. The overall charge transfer proceeds with a time constant of 41 ns, which compares favorably to a time constant of 1835 ns associated with equidistant hole tunneling between the same donor-acceptor couple bridged by three identical p-xylene units. The combined hopping/tunneling sequence thus leads to an acceleration of hole transfer by roughly a factor of 50 when compared to a pure tunneling mechanism.  相似文献   

5.
The electrochemical reduction mechanism of ethidium bromide was first studied by spectroelectrochemistry. This reduction was proved to be a two-step process by cyclic voltammetry, differential pulse voltammetry and spectroelectrochemistry, in which each step was proved to be a one-electron transfer process by a spectropotentiostatic fluorescence technique. Hydroethidine was confirmed to be the final product by comparing the spectrum of the product of the electrochemical reduction to that of the product of the chemical reduction of ethidium bromide, and a carbon-centered radical was concluded to be a reasonable intermediate product during the electrochemical reduction of ethidium bromide.  相似文献   

6.
Coarctate reactions form a separate class of elementary closed-shell processes in addition to polar and pericyclic reactions. Hence, they also follow a different homology principle. Whereas vinylogous polar and pericyclic reactions differ in the length of the reacting system by a double bond, coarctate reactions can be homologized (ethynylogized) by extending a known system by a triple bond. The prediction, which is based on theoretical considerations, is confirmed experimentally by the fragmentation of cyclopropylethynyl nitrene to cyano acetylene and ethylene, a reaction that is "ethynyloguous" to the known fragmentation of cyclopropyl nitrene to ethylene and HCN.  相似文献   

7.
The aminodihydropentalene derivative 1a reacts with the Lewis acidic RB(C(6)F(5))(2) boranes (2a-c) by C-C bond cleavage to yield the formal borylene insertion products 3. In contrast, 1a,b react with HB(C(6)F(5))(2) at 55 °C by elimination of dihydrogen to yield the iminium-stabilized zwitterionic heterofulvenes 10a,b. The reaction pathways were studied by preparation of the kinetically controlled intermediates 7a,b and the thermodynamically controlled products 9a,b, monitored by variable-temperature NMR experiments, and supported by DFT calculations. The trapping reactions of 9a with HCl and PhCHO, respectively, led to the addition products 13 and 14. Compounds 3c, 7a,b, 10a,b, 11, 13, and 14 were characterized by X-ray diffraction.  相似文献   

8.
The secondary α-acetylbenzyl and α-benzoylbenzyl cations, as well as their tertiary analogues, have been generated in a mass spectrometer by electron impact induced fragmentation of the corresponding α-bromoketones. These ions belong to the interesting family of destabilized α-acylcarbenium ions. While primary α-acylcarbenium ions appear to be unstable, the secondary and tertiaiy ions exhibit the usual behaviour of stable entities in a potential energy well. This can be attributed to a ‘push-pull’ substitution at the carbenium ion centre by an electron-releasing phenyl group and an electron-withdrawing acyl substituent. The characteristic unimolecular reaction of the metastaible secondary and tertiary α-acylbenzyl cations is the elimination of CO by a rearrangement reaction involving a 1,2-shift of a methyl group and a phenyl group, respectively. The loss of CO is accompanied by a very large kinetic energy release, which gives rise to broad and dish-topped peaks for this process in the mass-analysed ion kinetic energy spectra of the corresponding ions. This behaviour is attributed to the rigid critical configuration of a corner-protonatei cyclopropanone derivative and a bridged phenonium ion derivative, respectively, for this reaction. For the tertiary α-acetyl-α-methylbenzyl cations, it has been shown by deuterium labelling and by comparison of collisional activation spectra that these ions equilibrate prior to decomposition with their ‘protomer’ derivatives formed by proton migration from the α-methyl substituent to the carbonyl group and to the benzene ring.  相似文献   

9.
Anodic decomposition of a phenylmagnesium halide at a surface-hydrogenated silicon electrode leads to formation of polymeric layers covalently anchored to the silicon surface. These layers have been characterized using spectroellipsometry, photoluminescence, infrared, and X-ray photoelectron spectroscopies. The phenyl ring appears preserved in the process, and the polymer formed is a polyphenylene. Contamination by aliphatic groups from the solvent may be minimized by using a solvent resistant to hydrogen abstraction by the phenyl radicals. Regioselectivity of the branching may be oriented to the para form by using 4-chlorophenylmagnesium bromide as the precursor.  相似文献   

10.
We show that highly enhanced and selective adhesion can be achieved between surfaces patterned with complementary microchannel structures. An elastic material, poly(dimethylsiloxane) (PDMS), was used to fabricate such surfaces by molding into a silicon master with microchannel profiles patterned by photolithography. We carried out adhesion tests on both complementary and mismatched microchannel/micropillar surfaces. Adhesion, as measured by the energy release rate required to propagate an interfacial crack, can be enhanced by up to 40 times by complementary interfaces, compared to a flat control, and slightly enhanced for some special noncomplementary samples, despite the nearly negligible adhesion for other mismatched surfaces. For each complementary surface, we observe defects in the form of visible striations, where pillars fail to insert fully into the channels. The adhesion between complementary microchannel surfaces is enhanced by a combination of a crack-trapping mechanism and friction between a pillar and channel and is attenuated by the presence of defects.  相似文献   

11.
An acoustic trap was designed and constructed to investigate, on a microscale, physicochemical processes relevant to the troposphere, mainly focusing on the temperature range below 0 degrees C. Droplets ranging from 0.5 nL to 4 microliter (0.1 to 2 mm in diameter) were introduced into the cooled reaction chamber by means of a piezo-driven micro pump with a reproducibility better than 5%. Up-take of H2O2 from the gas phase by the levitated droplet was measured and calibrated by in-situ chemiluminescence. Freezing of stably positioned droplets was observed and documented by means of a microscope and a video camera; this demonstrated the usefulness of the technique for simulation and investigation of cloud processes. Ex-situ microanalysis of sub-microliter droplets by use of a fiber optic luminometer was also shown to be a suitable means of investigating relevant physicochemical processes on a micro scale.  相似文献   

12.
Six polyclonal antisera to chloramphenicol (CAP) were successfully raised in camels, donkeys and goats. As a comparison of sensitivity, IC50 values ranged from 0.3 ng mL−1 to 5.5 ng mL−1 by enzyme-linked immunosorbent assay (ELISA) and from 0.7 ng mL−1 to 1.7 ng mL−1 by biosensor assay. The introduction of bovine milk extract improved the sensitivity of four of the antisera by ELISA and two by biosensor assay; a reduction in sensitivity of the remaining antisera ranged by a factor of 1.1-2.6. Porcine kidney extract reduced the sensitivity of all the antisera by a factor ranging from 1.1 to 7 by ELISA and a factor of 1.5 to 4 by biosensor. A low cross-reactivity with thiamphenicol (TAP) and florfenicol (FF) was displayed by antiserum G2 (1.2% and 18%, respectively) when a homologous ELISA assay format was employed. No cross-reactivity was displayed by any of the antisera when a homologous biosensor assay format was employed. Switching to a heterologous ELISA format prompted three of the antisera to display more significant cross-reactivity with TAP and FF (53% and 82%, respectively, using D1). The heterologous biosensor assay also increased the cross-reactivity of D1 for TAP and FF (56% and 129%, respectively) and of one other antiserum (G1) to a lesser degree. However, unlike the ELISA, the heterologous biosensor assay produced a substantial reduction in sensitivity (by a factor of 6 for D1).  相似文献   

13.
The natural packaging of DNA in the cell by histones provides a particular environment affecting its sensitivity to oxidative damage. In this work, we used the complexation of DNA by cationic surfactants to modulate the conformation, the dynamics, and the environment of the double helix. Photo-oxidative damage initiated by benzophenone as the photosensitizer on a plasmid DNA complexed by dodecyltrimethylammonium chloride (DTAC), tetradecyltrimethylammonium chloride (TTAC), cetyltrimethyammonium chloride (CTAC) and bromide (CTAB) was detected by agarose gel electrophoresis. By fluorescent titration in the presence of ethidium bromide (EB) and agarose gel electrophoresis, we experimentally confirmed the complexation diagrams with a critical aggregation concentration on DNA matrix (CAC DNA) delimiting two regions of complexation, according to the DNA-phosphate concentration. The study of the photo-oxidative damage shows, for the first time, a direct correlation between the DNA complexation by these surfactants and the efficiency of DNA cleavage, with a maximum corresponding to the CAC DNA for DTAC and CTAC, and to DNA neutralization for CTAC and CTAB. The localization of a photosensitizer having low water solubility, such as benzophenone, inside the hydrophobic domains formed by the surfactant aggregated on DNA, locally increases the photoinduced cleavage by the free radical oxygen species generated. The inefficiency of a water-soluble quencher of hydroxyl radicals, such as mannitol, confirmed this phenomenon. The detection of photo-oxidative damage constitutes a new tool for investigating DNA complexation by cationic surfactants. Moreover, highlighting the drastically increased sensitivity of a complexed DNA to photo-oxidative damage is of crucial importance for the biological use of surfactants as nonviral gene delivery systems.  相似文献   

14.
In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.  相似文献   

15.
We report a rapid and highly sensitive trace analysis of paraquat (PQ) in water using a surface-enhanced Raman scattering (SERS)-based microdroplet sensor. Aqueous samples of PQ, silver nanoparticles, and NaCl as the aggregation agent were introduced into a microfluidic channel and were encapsulated by a continuous oil phase to form a microdroplet. PQ molecules were adsorbed onto particle surfaces in isolated droplets by passing through the winding part of the channel. Memory effects, caused by the precipitation of nanoparticle aggregates on channel walls, were removed because the aqueous droplets were completely isolated by a continuous oil phase. The limit of detection (LOD) of PQ in water, determined by the SERS-based microdroplet sensor, was estimated to be below 2×10(-9) M, and this low detection limit was enhanced by one to two orders of magnitude compared to conventional analytical methods.  相似文献   

16.
The biological dehalogenation of fluoroacetate carried out by fluoroacetate dehalogenase is discussed by using quantum mechanical/molecular mechanical (QM/MM) calculations for a whole‐enzyme model of 10 800 atoms. Substrate fluoroacetate is anchored by a hydrogen‐bonding network with water molecules and the surrounding amino acid residues of Arg105, Arg108, His149, Trp150, and Tyr212 in the active site in a similar way to haloalkane dehalogenase. Asp104 is likely to act as a nucleophile to attack the α‐carbon of fluoroacetate, resulting in the formation of an ester intermediate, which is subsequently hydrolyzed by the nucleophilic attack of a water molecule to the carbonyl carbon atom. The cleavage of the strong C? F bond is greatly facilitated by the hydrogen‐bonding interactions between the leaving fluorine atom and the three amino acid residues of His149, Trp150, and Tyr212. The hydrolysis of the ester intermediate is initiated by a proton transfer from the water molecule to His271 and by the simultaneous nucleophilic attack of the water molecule. The transition state and produced tetrahedral intermediate are stabilized by Asp128 and the oxyanion hole composed of Phe34 and Arg105.  相似文献   

17.
Hydrogen gas has been produced by reforming glucose in a hybrid photoelectrochemical cell that couples a dye-sensitized nanoparticulate wide band gap semiconductor photoanode to the enzyme-based oxidation of glucose. A layer of porphyrin sensitizer is adsorbed to a TiO2 nanoparticulate aggregate sintered to a conducting glass substrate to form the photoanode. Excitation of the porphyrin results in electron injection into the TiO2, and migration to a microporous platinum cathode where hydrogen is produced by hydrogen ion reduction. The oxidized sensitizer dye is reduced by NADH, regenerating the dye and poising the NAD+/NADH redox couple oxidizing. The NAD+ is recycled to NADH by the enzyme glucose dehydrogenase, which obtains the necessary electrons from oxidation of glucose. The reforming of glucose produces gluconolactone, which hydrolyzes to gluconate; the electrochemical potential necessary to overcome thermodynamic and kinetic barriers to hydrogen production by NADH is provided by light. The quantum yield of hydrogen is approximately 2.5%.  相似文献   

18.
We introduce a novel approach for preparing polymer-modified and chemically microstructured paper substrates by a photo-chemical attachment of functional polymers to cellulose microfibers inside model filter papers. Poly(methyl methacrylate), PMMA copolymers, which carry a defined amount of photo-reactive benzophenone functional groups, are adsorbed to paper substrates from solution by a simple dip coating process, followed by covalent attachment of the physisorbed polymers through UV-light irradiation. Non-bound macromolecules can be removed from paper sheets by simple solvent extraction, and the resulting polymer-modified substrates were analysed with respect to chemical identity, attached polymer mass, and homogeneity of the polymer attachment. The amount of paper-attached polymers can be conveniently controlled in a wide range from a few mg/g cellulose fiber up to several tenth of mg/g cellulose fiber, by adjusting the polymer concentration in the coating solution. Polymers are being attached by photo-chemical means, and chemical micro patterns on paper can be designed by lithographical means. In first proof-of-concept studies, millimeter-scale channels were prepared that can be used to control fluid penetration by capillary actions. Because of the modularity in the design of photo-reactive polymers, a number of different chemically microstructured papers can be envisioned which may become potentially interesting in lab-on-paper devices.  相似文献   

19.
A remarkable challenge for the design of molecular machines is the realization of a synchronized and unidirectional movement caused by an external stimulus. Such a movement can be achieved by a unidirectionally controlled change of the conformation or the configuration. Biphenol derivatives are one possibility to realize a redox-driven unidirectional molecular switch. For this reason, a 4,4'-biphenol derivative was fixed to a chiral cyclopeptidic scaffold and stimulated by chemical oxidants and reduction agents. The conformation of the switch was determined by DFT calculations by using B3LYP and the 6-31G* basis set. The switching process was observed by UV and circular dichroism (CD) spectroscopic measurements. Several oxidation agents and various conditions were tested, among which (diacetoxy)iodobenzene (DAIB) in methanol proved to be the best. In this way it was possible to synthesize a redox-stimulated molecular switch with a movement that is part of a rotation around a biaryl binding axis.  相似文献   

20.
Glancing angle laser-induced fluorescence was used to investigate the effects of organic monolayer coatings on the ozonation kinetics of pyrene at the air-aqueous interface. Fluorescence spectra show that both 1-octanol and octanoic acid coatings give rise to similar decreased polarity at the interface relative to the uncoated surface and show a similar propensity of pyrene to partition to the interface. Ozonation kinetics follow a Langmuir-Hinshelwood mechanism, indicating a surface reaction. At high ozone concentrations, a monolayer coating of 1-octanol enhances the rate relative to the uncoated surface and a coating of octanoic acid decreases the rate. Pyrene fluorescence is most efficiently quenched by ozone in the presence of a 1-octanol coating, followed by the uncoated surface, and least efficiently quenched by ozone in the presence of octanoic acid. In agreement with earlier work, a significant photoenhancement of the ozonation is observed at the uncoated surface; however, no enhancement is observed with monolayer coatings of either organic. Quantum chemical calculations indicate a reasonable binding of ozone by the carboxylic acid group (in both its dissociated and undissociated forms). We suggest that the inhibition of the water surface reaction by a monolayer of octanoic acid is due to the sequestration of ozone by the carboxylic acid group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号