首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modulation of photo-oxidative DNA damage by cationic surfactant complexation
Authors:Rudiuk Sergii  Franceschi-Messant Sophie  Chouini-Lalanne Nadia  Perez Emile  Rico-Lattes Isabelle
Institution:Laboratoire des IMRCP UMR 5623 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France.
Abstract:The natural packaging of DNA in the cell by histones provides a particular environment affecting its sensitivity to oxidative damage. In this work, we used the complexation of DNA by cationic surfactants to modulate the conformation, the dynamics, and the environment of the double helix. Photo-oxidative damage initiated by benzophenone as the photosensitizer on a plasmid DNA complexed by dodecyltrimethylammonium chloride (DTAC), tetradecyltrimethylammonium chloride (TTAC), cetyltrimethyammonium chloride (CTAC) and bromide (CTAB) was detected by agarose gel electrophoresis. By fluorescent titration in the presence of ethidium bromide (EB) and agarose gel electrophoresis, we experimentally confirmed the complexation diagrams with a critical aggregation concentration on DNA matrix (CAC DNA) delimiting two regions of complexation, according to the DNA-phosphate concentration. The study of the photo-oxidative damage shows, for the first time, a direct correlation between the DNA complexation by these surfactants and the efficiency of DNA cleavage, with a maximum corresponding to the CAC DNA for DTAC and CTAC, and to DNA neutralization for CTAC and CTAB. The localization of a photosensitizer having low water solubility, such as benzophenone, inside the hydrophobic domains formed by the surfactant aggregated on DNA, locally increases the photoinduced cleavage by the free radical oxygen species generated. The inefficiency of a water-soluble quencher of hydroxyl radicals, such as mannitol, confirmed this phenomenon. The detection of photo-oxidative damage constitutes a new tool for investigating DNA complexation by cationic surfactants. Moreover, highlighting the drastically increased sensitivity of a complexed DNA to photo-oxidative damage is of crucial importance for the biological use of surfactants as nonviral gene delivery systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号