首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of determining appropriate constitutive equations for multidimensional time averaged two-phase flow equations is studied from the point of view of starting from general principles, and proceeding to specific constitutive equations which contain known physical effects. Energetic effects and phase change are not considered. Models are given for the interfacial momentum transfer, the laminar and turbulent (Reynolds) stresses, and the pressure differences between the phases, and between a given phase pressure and the interfacial average pressure.  相似文献   

2.
The results of numerically modeling two-dimensional two-phase flow of the “gas-solid particles” type in a vertical turbulent jet are presented for three cases of its configuration, namely, descending, ascending, and without account of gravity. Both flow phases are modeled on the basis of the Navier-Stokes equations averaged within the framework of the Reynolds approximation and closed by an extended k-? turbulence model. The averaged two-phase flow parameters (particle and gas velocities, particle concentration, turbulent kinetic energy, and its dissipation) are described using the model of mutually-penetrating continua. The model developed allows for both the direct effect of turbulence on the motion of disperse-phase particles and the inverse effect of the particles on turbulence leading to either an increase or a decrease in the turbulent kinetic energy of the gas. The model takes account for gravity, viscous drag, and the Saffman lift. The system of equations is solved using a difference method. The calculated results are in good agreement with the corresponding experimental data which confirms the effect of solid particles on the mean and turbulent characteristics of gas jets.  相似文献   

3.
A two-equation turbulence model has been dereloped for predicting two-phase flow the two equations describe the conserration of turbulence kinetic energy and dissipation rate of that energy for the incompressible carrier fluid in a two-phase flow The continuity, the momentum, K and ε equations are modeled. In this model,the solid-liquid slip veloeites, the particle-particte interactions and the interactions between two phases are considered,The sandy water pipe turbulent flows are sueeessfuly predicted by this turbulince model.  相似文献   

4.
In the present article, the droplet dynamics in turbulent flow is numerically predicted. The modelling is based on an interfacial marker-level set (IMLS) method, coupled with the Reynolds-averaged Navier–Stokes (RANS) equations to predict the dynamics of turbulent two-phase flow. The governing equations for time-dependent, two-dimensional and incompressible two-phase flow are described in both phases and solved separately using a control volume approach on structured cell-centred collocated grids. The topological changes of the interface are predicted by applying the level set approach. The kinematic and dynamic conditions on the interface separating the two phases are satisfied. The numerical method proposed is validated against a well-known computational fluid dynamics problem. Further, the deformation and breakup of a single droplet either suddenly moved in air or exposed to turbulent stream are numerically investigated. In general, the developed numerical method demonstrates remarkable capability in predicting the characteristics of complex turbulent two-phase flows.  相似文献   

5.
A modified Reynolds stress turbulence model for the pressure rate of strain can be derived for dispersed two-phase flows taking into account gas-particle interaction. The transport equations for the Reynolds stresses as well as the equation for the fluctuating pressure can be derived starting from the multiphase Navier–Stokes equations. The unknown pressure rate of strain correlation in the Reynolds stress equations is then modelled by considering the multiphase equation for the fluctuating pressure. This leads to a multiphase pressure rate of strain model. The extra particle interaction source terms occurring in the model for the pressure rate of strain can be constructed easily, with no noticeable extra computational cost. Eulerian–Lagrangian simulation results of a turbulent dispersed two-phase jet are presented to show the differences in results with and without the new two-way coupling terms.  相似文献   

6.
The purpose of the study is to present an explicit self-consistent algebraic model of the Reynolds stresses (nonlinear turbulent viscosity) for calculating two-phase flows laden with small heavy particles. The model is tested by means of comparing with the results of the solution of a system of differential equations for all components of the Reynolds stresses and the data of direct numerical calculations in a homogeneous shear flow with particles.  相似文献   

7.
Effect of particle size on a two-phase turbulent jet   总被引:8,自引:0,他引:8  
The effect of particle size on two-phase turbulent jet flow structure is studied in the present experimental investigation. Polystyrene solid particles of 210, 460, and 780 μm were used. The particles' mass loading ratios ranged from 0 to 3.6. The flow Reynolds number was 2 ‘ 104, which was based on the pipe nozzle diameter and the fluid-phase centerline velocity at the nozzle exit. A two-color laser-Doppler anemometer (LDA), combined with the amplitude discrimination method and the velocity filter method, was employed for measurement. The measurement range of the jet flow was from the initial pipe exit to 90D downstream. Results are presented for the mean velocities of particle and fluid phases, the flow's turbulent intensities and the flow's Reynolds stresses. The energy spectra and the correlation functions of the two-phase jet flow were also obtained by using another one-component He-Ne LDA system.  相似文献   

8.
Whereas Large Eddy Simulation (LES) of single-phase flows is already widely used in the CFD world, even for industrial applications, LES of two-phase interfacial flows, i.e. two-phase flows where an interface separates liquid and gas phases, still remains a challenging task. The main issue is the development of subgrid scale models well suited for two-phase interfacial flows. The aim of this work is to generate a detailed data base from direct numerical simulation (DNS) of two-phase interfacial flows in order to clearly understand interactions between small turbulent scales and the interface separating the two phases. This work is a first contribution in the study of the interface/turbulence interaction in the configuration where the interface is widely deformed and where both phases are resolved by DNS. To do this, the interaction between an initially plane interface and a freely decaying homogeneous isotropic turbulence (HIT) is studied. The densities and viscosities are the same for both phases in order to focus on the effect of the surface tension coefficient. Comparisons with existing theories built on wall-bounded or free-surface turbulence are carried out. To understand energy transfers between the interfacial energy and the turbulent one, PDFs of the droplet sizes distribution are calculated. An energy budget is carried out and turbulent statistics are performed including the distance to the interface as a parameter. A spectral analysis is achieved to highlight the energy transfer between turbulent scales of different sizes. The originality of this work is the study of the interface/turbulence interactions in the case of a widely deformed interface evolving in a turbulent flow.  相似文献   

9.
Direct numerical simulations of the Navier–Stokes equations have been carried out with the objective of studying turbulent boundary layers in adverse pressure gradients. The boundary layer flows concerned are of the equilibrium type which makes the analysis simpler and the results can be compared with earlier experiments and simulations. This type of turbulent boundary layers also permits an analysis of the equation of motion to predict separation. The linear analysis based on the assumption of asymptotically high Reynolds number gives results that are not applicable to finite Reynolds number flows. A different non-linear approach is presented to obtain a useful relation between the freestream variation and other mean flow parameters. Comparison of turbulent statistics from the zero pressure gradient case and two adverse pressure gradient cases shows the development of an outer peak in the turbulent energy in agreement with experiment. The turbulent flows have also been investigated using a differential Reynolds stress model. Profiles for velocity and turbulence quantities obtained from the direct numerical simulations were used as initial data. The initial transients in the model predictions vanished rapidly. The model predictions are compared with the direct simulations and low Reynolds number effects are investigated.  相似文献   

10.
The analysis of turbulent two-phase flows requires closure models in order to perform reliable computational multiphase fluid dynamics (CMFD) analyses. A spectral turbulence cascade-transport model, which tracks the evolution of the turbulent kinetic energy from large to small liquid eddies, has been developed for the analysis of the homogeneous decay of isotropic single and bubbly two-phase turbulence. This model has been validated for the decay of homogeneous, isotropic single and two-phase bubbly flow turbulence for data having a 5 mm mean bubble diameter. The Reynolds number of the data based on bubble diameter and relative velocity is approximately 1400.  相似文献   

11.
垂直湍流液-固流中大颗粒的相对速度   总被引:4,自引:0,他引:4  
通过量纲分析和实验测量,对于垂直、局部均匀的湍流稀态液一固流中,大颗粒的相对速度,建立了无量纲参数表达式.用分析和实验相结合的方法,确定了表达式中无量纲参数的幂次及有关系数.实验中用激光多普勒分相测量技术,分别测出流体和颗粒的时均速度结果表明,大颗粒相对速度强烈依赖于流体雷诺数,当流体雷诺数较高时,其幂次渐近于1.5。  相似文献   

12.
In the current study, numerical investigation of incompressible turbulent flow is presented. By the artificial compressibility method, momentum and continuity equations are coupled. Considering Reynolds averaged Navier–Stokes equations, the Spalart–Allmaras turbulence model, which has accurate results in two‐dimensional problems, is used to calculate Reynolds stresses. For convective fluxes a Roe‐like scheme is proposed for the steady Reynolds averaged Navier–Stokes equations. Also, Jameson averaging method was implemented. In comparison, the proposed characteristics‐based upwind incompressible turbulent Roe‐like scheme, demonstrated very accurate results, high stability, and fast convergence. The fifth‐order Runge–Kutta scheme is used for time discretization. The local time stepping and implicit residual smoothing were applied as the convergence acceleration techniques. Suitable boundary conditions have been implemented considering flow behavior. The problem has been studied at high Reynolds numbers for cross flow around the horizontal circular cylinder and NACA0012 hydrofoil. Results were compared with those of others and a good agreement has been observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The present work aims to investigate numerically the flowfield and heat transfer process in gas-solid suspension in a vertical pneumatic conveying pipe. The Eulerian-Lagrangian model is used to simulate the flow of the two-phases. The gas phase is simulated based on Reynolds Average Navier-Stokes equations (RANS) with low Reynolds number k-ε model, while particle tracking procedure is used for the solid phase. An anisotropic model is used to calculate the Reynolds stresses and the turbulent Prandtl number is calculated as a function of the turbulent viscosity. The model takes into account the lift and drag forces and the effect of particle rotation as well as the particles dispersion by turbulence effect. The effects of inter-particles collisions and turbulence modulation by the solid particles, i.e. four-way coupling, are also included in the model. Comparisons between different models for turbulence modulation with experimental data are carried out to select the best model. The model is validated against published experimental data for velocities of the two phases, turbulence intensity, solids concentration, pressure drop, heat transfer rates and Nusselt number distribution. The comparisons indicate that the present model is able to predict the complex interaction between the two phases in non-isothermal gas-solid flow in the tested range. The results indicate that the particle-particle collision, turbulence dispersion and lift force play a key role in the concentration distribution. In addition, the heat transfer rate increases as the mass loading ratio increases and Nusselt number increases as the pipe diameter increases.  相似文献   

14.
Two methods for coupling the Reynolds‐averaged Navier–Stokes equations with the qω turbulence model equations on structured grid systems have been studied; namely a loosely coupled method and a strongly coupled method. The loosely coupled method first solves the Navier–Stokes equations with the turbulent viscosity fixed. In a subsequent step, the turbulence model equations are solved with all flow quantities fixed. On the other hand, the strongly coupled method solves the Reynolds‐averaged Navier–Stokes equations and the turbulence model equations simultaneously. In this paper, numerical stabilities of both methods in conjunction with the approximated factorization‐alternative direction implicit method are analysed. The effect of the turbulent kinetic energy terms in the governing equations on the convergence characteristics is also studied. The performance of the two methods is compared for several two‐ and three‐dimensional problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
This article reports on the potential of application of LES in the calculation of turbulent two-phase flows, in the case where each phase is resolved and interfaces remain much larger than the mesh size. In comparison with single-phase flow, successful application of LES to resolve two-phase flow problems should account for the complex interaction between turbulence and interfaces. Non-linear transfers of turbulent energy across the interface have to be accurately modeled. The derivation of the complete filtered two-phase flow governing equations has been formulated to deal with turbulence at the interface in a comprehensive and practical way. Explicit filtering of 2D direct numerical simulations has been employed to evaluate the order of magnitude of the new subgrid contributions. A parametric study on the academic test case of two counter-rotative vortices and a more complex test case of phase inversion in a closed box have been utilized to perform an order of magnitude analysis of different transport mechanisms. Important features of turbulent energy transfer across the interface have been discussed. Analyses of the numerical results have been conducted to derive conclusions on the relative importance of the different subgrid scale contributions, and modeling issues and solutions are provided.  相似文献   

16.
In this paper, laminar forced convection heat transfer of a copper-water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. For the first time, the detailed study of the relative velocity and temperature of the phases are presented and it has been observed that the relative velocity and temperature between the phases is very small and negligible and the nanoparticle concentration distribution is uniform. However, the two-phase modeling results show higher heat transfer enhancement in comparison to the homogeneous single-phase model. Also, the heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration as well as with decrease in the nanoparticle diameter, while the pressure drop increases only slightly.  相似文献   

17.
陈鑫  余锡平 《力学学报》2012,44(1):65-70
基于雷诺平均的水沙两相流方程, 建立了一个非平衡全沙输移二维数学模型. 模型考虑相间相对运动以及多颗粒之间的相互影响, 通过相间作用力进行两相耦合.和传统的单相流模型以及低浓度两相流模型相比, 该模型摆脱了依赖经验公式给定床面边界条件的局限性. 针对明渠净冲刷问题, 在合理给定水相和泥沙相边界条件的前提下计算了泥沙浓度分布的沿程变化, 并利用物理模型实验的结果和理论解验证了数学模型的正确性,同时也分析了明渠净冲刷问题中紊动扩散和重力沉降现象的特征.   相似文献   

18.
For complex turbulent flows, Reynolds stress closure modeling (RSCM) is the lowest level at which models can be developed with some fidelity to the governing Navier–Stokes equations. Citing computational burden, researchers have long sought to reduce the seven-equation RSCM to the so-called algebraic Reynolds stress model which involves solving only two evolution equations for turbulent kinetic energy and dissipation. In the past, reduction has been accomplished successfully in the weak-equilibrium limit of turbulence. In non-equilibrium turbulence, attempts at reduction have lacked mathematical rigor and have been based on ad hoc hypotheses resulting in less than adequate models.?In this work we undertake a formal (numerical) examination of the dynamical system of equations that constitute the Reynolds stress closure model to investigate the following questions. (i) When does the RSCM equation system formally permit reduced representation? (ii) What is the dimensionality (number of independent variables) of the permitted reduced system? (iii) How can one derive the reduced system (algebraic Reynolds stress model) from the full RSCM equations? Our analysis reveals that a lower-dimensional representation of the RSCM equations is possible not only in the equilibrium limit, but also in the slow-manifold stage of non-equilibrium turbulence. The degree of reduction depends on the type of mean-flow deformation and state of turbulence. We further develop two novel methods for deriving algebraic Reynolds stress models from RSCM equations in non-equilibrium turbulence. The present work is expected to play an important role in bringing much of the sophistication of the RSCM into the realm of two-equation algebraic Reynolds stress models. Another objective of this work is to place the other algebraic stress modeling efforts in the lower-dimensional modeling context. Received 19 November 1999 and accepted 3 August 2000  相似文献   

19.
A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.  相似文献   

20.
油-水两相湍浮力回流双流体模型   总被引:1,自引:1,他引:1  
在自然界和工程技术的许多领域,常遇到这样一类物理性质相差悬殊的两相复杂湍流,其特点是流场中包含有回流和因两相间的密度差而产生的浮力,在一定条件下,流场的密度分布会发生突变,使数学模拟和数值计算的难度大大增加。本文把研究精细的油污染预报模型作为基本目标,广泛地涉及了两相湍流精细模拟的理论和方法。用Eulerian坐标系中多流体模型统一描述油和水两相各自的运动,并分别对油和水本身的湍流输运规律以及相间相互作用规律进行模拟,建立了油-水两相湍浮力回流双流体模型及相应的数值计算方法。选定了包含有浮力和回流的两相复杂湍流作为模拟对象,对模型进行了数值验证,并与实测资料作了对比。然后,对油-水两相湍流进行了预报。结果表明,模型的模拟效果非常满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号