首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small boron clusters have been shown to be planar from a series of combined photoelectron spectroscopy and theoretical studies. However, a number of boron clusters are quasiplanar, such as B(7)(-) and B(12)(-). To elucidate the nature of the nonplanarity in these clusters, we have investigated the electronic structure and chemical bonding of two isoelectronic Al-doped boron clusters, AlB(6)(-) and AlB(11)(-). Vibrationally resolved photoelectron spectra were obtained for AlB(6)(-), resulting in an accurate electron affinity (EA) for AlB(6) of 2.49 ± 0.03 eV. The photoelectron spectra of AlB(11)(-) revealed the presence of two isomers with EAs of 2.16 ± 0.03 and 2.33 ± 0.03 eV, respectively. Global minimum structures of both AlB(6)(-) and AlB(11)(-) were established from unbiased searches and comparison with the experimental data. The global minimum of AlB(6)(-) is nearly planar with a central B atom and an AlB(5) six membered ring, in contrast to that of B(7)(-), which possesses a C(2v) structure with a large distortion from planarity. Two nearly degenerate structures were found for AlB(11)(-) competing for the global minimum, in agreement with the experimental observation. One of these isomers with the lower EA can be viewed as substituting a peripheral B atom by Al in B(12)(-), which has a bowl shape with a B(9) outer ring and an out-of-plane inner B(3) triangle. The second isomer of AlB(11)(-) can be viewed as an Al atom interacting with a B(11)(-) cluster. Both isomers of AlB(11)(-) are perfectly planar. It is shown that Al substitution of a peripheral B atom in B(7)(-) and B(12)(-) induces planarization by slightly expanding the outer ring due to the larger size of Al.  相似文献   

2.
The structures and the electronic properties of two aluminum-doped boron clusters, AlB(7)(-) and AlB(8)(-), were investigated using photoelectron spectroscopy and ab initio calculations. The photoelectron spectra of AlB(7)(-) and AlB(8)(-) are both broad, suggesting significant geometry changes between the ground states of the anions and the neutrals. Unbiased global minimum searches were carried out and the calculated vertical electron detachment energies were used to compare with the experimental data. We found that the Al atom does not simply replace a B atom in the parent B(8)(-) and B(9)(-) planar clusters in AlB(7)(-) and AlB(8)(-). Instead, the global minima of the two doped-clusters are of umbrella shapes, featuring an Al atom interacting ionically with a hexagonal and heptagonal pyramidal B(7) (C(6v)) and B(8) (C(7v)) fragment, respectively. These unique umbrella-type structures are understood on the basis of the special stability of the quasi-planar B(7)(3-) and planar B(8)(2-) molecular wheels derived from double aromaticity.  相似文献   

3.
We created mixed triatomic clusters, AlCGe(-), AlSi(2)(-), and AlGe(2)(-), and studied their electronic structure and chemical bonding using photoelectron spectroscopy and ab initio calculations. Excellent agreement between theoretical and experimental photoelectron spectra confirmed the predicted global minimum structures for these species. Chemical bonding analysis revealed that the AlSi(2)(-) and AlGe(2)(-) anions can be described as species with conflicting (sigma-antiaromatic and pi-aromatic) aromaticity. The AlCGe(-) anion represents an interesting example of chemical species which is between classical and aromatic.  相似文献   

4.
Negatively charged sodium auride clusters, NanAun- (n = 1-3), have been investigated experimentally using photoelectron spectroscopy and ab initio calculations. Well-resolved electronic transitions were observed in the photoelectron spectra of NanAun- (n = 1-3) at several photon energies. Very large band gaps were observed in the photoelectron spectra of the anion clusters, indicating that the corresponding neutral clusters are stable closed-shell species. Calculations show that the global minimum of Na2Au2- is a quasi-linear species with Cs symmetry. A planar isomer of D2h symmetry is found to be 0.137 eV higher in energy. The two lowest energy isomers of Na3Au3- consist of three-dimensional structures of Cs symmetry. The global minimum of Na3Au3- has a bent-flake structure lying 0.077 eV below a more compact structure. The global minima of the sodium auride clusters are confirmed by the good agreement between the calculated electron detachment energies of the anions and the measured photoelectron spectra. The global minima of neutral Na2Au2 and Na3Au3 are found to possess higher symmetries with a planar four-membered ring (D2h) and a six-membered ring (D3h) structure, respectively. The chemical bonding in the sodium auride clusters is found to be highly ionic with Au acting as the electron acceptor.  相似文献   

5.
The structural and electronic effects of isoelectronic substitution by Ag and Cu atoms on gold cluster anions in the size range between 13 and 15 atoms are studied using a combination of photoelectron spectroscopy and first-principles density functional calculations. The most stable structures of the doped clusters are compared with those of the undoped Au clusters in the same size range. The joint experimental and theoretical study reveals a new C(3v) symmetric isomer for Au(13)(-), which is present in the experiment, but has hitherto not been recognized. The global minima of Au(14)(-) and Au(15)(-) are resolved on the basis of comparison between experiment and newly computed photoelectron spectra that include spin-orbit effects. The coexistence of two isomers for Au(15)(-) is firmly established with convincing experimental evidence and theoretical calculations. The overall effect of the isoelectronic substitution is minor on the structures relative to those of the undoped clusters, except that the dopant atoms tend to lower the symmetries of the doped clusters.  相似文献   

6.
The structures and chemical bonding of the B(21)(-) cluster have been investigated by a combined photoelectron spectroscopy and ab initio study. The photoelectron spectrum at 193 nm revealed a very high adiabatic electron binding energy of 4.38 eV for B(21)(-) and a congested spectral pattern. Extensive global minimum searches were conducted using two different methods, followed by high-level calculations of the low-lying isomers. The global minimum of B(21)(-) was found to be a quasiplanar structure with the next low-lying planar isomer only 1.9 kcal/mol higher in energy at the CCSD(T)/6-311-G* level of theory. The calculated vertical detachment energies for the two isomers were found to be in good agreement with the experimental spectrum, suggesting that they were both present experimentally and contributed to the observed spectrum. Chemical bonding analyses showed that both isomers consist of a 14-atom periphery, which is bonded by classical two-center two-electron bonds, and seven interior atoms in the planar structures. A localized two-center two-electron bond is found in the interior of the two planar isomers, in addition to delocalized multi-center σ and π bonds. The structures and the delocalized bonding of the two lowest lying isomers of B(21)(-) were found to be similar to those in the two lowest energy isomers in B(19)(-).  相似文献   

7.
The copper-nucleoside anions, Cu(-)(cytidine) and Cu(-)(uridine), have been generated in the gas phase and studied by both experimental (anion photoelectron spectroscopy) and theoretical (density functional calculations) methods. The photoelectron spectra of both systems are dominated by single, intense, and relatively narrow peaks. These peaks are centered at 2.63 and 2.71 eV for Cu(-)(cytidine) and Cu(-)(uridine), respectively. According to our calculations, Cu(-)(cytidine) and Cu(-)(uridine) species with these peak center [vertical detachment energy (VDE)] values correspond to structures in which copper atomic anions are bound to the sugar portions of their corresponding nucleosides largely through electrostatic interactions; the observed species are anion-molecule complexes. The combination of experiment and theory also reveal the presence of a slightly higher energy, anion-molecule complex isomer in the case of the Cu(-)(cytidine). Furthermore, our calculations found that chemically bond isomers of these species are much more stable than their anion-molecule complex counterparts, but since their calculated VDE values are larger than the photon energy used in these experiments, they were not observed.  相似文献   

8.
The electronic structures and structural morphologies of naphthalene cluster anions, (naphthalene)(n)(-) (n=3-150), and its related aromatic cluster anions, (acenaphthene)(n)(-) (n=4-100) and (azulene)(n)(-) (n=1-100), are studied using anion photoelectron spectroscopy. For (naphthalene)(n) (-) clusters, two isomers coexist over a wide size range: isomers I and II-1 (28 < or = n < or =60) or isomers I and II-2 (n > or = ~60). Their contributions to the photoelectron spectra can be separated using an anion beam hole-burning technique. In contrast, such an isomer coexistence is not observed for (acenaphthene)(n) (-) and (azulene)(n) (-) clusters, where isomer I is exclusively formed throughout the whole size range. The vertical detachment energies (VDEs) of isomer I (7 < or = n < or = 100) in all the anionic clusters depend linearly on n(-13) and their size-dependent energetics are quite similar to one another. On the other hand, the VDEs of isomers II-1 and II-2 produced in (naphthalene)(n)(-) clusters with n > or = approximately 30 remain constant at 0.84 and 0.99 eV, respectively, 0.4-0.6 eV lower than those of isomer I. Based upon the ion source condition dependence and the hole-burning photoelectron spectra experiments for each isomer, the energetics and characteristics of isomers I, II-1, and II-2 are discussed: isomer I is an internalized anion state accompanied by a large change in its cluster geometry after electron attachment, while isomers II-1 and II-2 are crystal-like states with little structural relaxation. The nonappearance of isomers II-1 and II-2 for (acenaphthene)(n)(-) and (azulene)(n)(-) and a comparison with other aromatic cluster anions indicate that a highly anisotropic and symmetric pi-conjugated molecular framework, such as found in the linear oligoacenes, is an essential factor for the formation of the crystal-like ordered forms (isomers II-1 and II-2). On the other hand, lowering the molecular symmetry makes their production unfavorable.  相似文献   

9.
The electronic and geometrical structures of three nitrogen-doped aluminum clusters, Al(x)N(-) (x=3-5), are investigated using photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra have been obtained for the nitrogen-doped aluminum clusters at four photon energies (532, 355, 266, and 193 nm). Global minimum structure searches for Al(x)N(-) (x=3-5) and their corresponding neutrals are performed using several theoretical methods. Vertical electron detachment energies are calculated using three different methods for the lowest energy structures and low-lying isomers are compared with the experimental observations. Planar structures have been established for all the three Al(x)N(-) (x=3-5) anions from the joint experimental and theoretical studies. For Al(5)N(-), a low-lying nonplanar isomer is also found to contribute to the experimental spectra, signifying the onset of two-dimensional to three-dimensional transition in nitrogen-doped aluminum clusters. The chemical bonding in all the planar clusters has been elucidated on the basis of molecular orbital and natural bond analyses.  相似文献   

10.
The electron binding energies and relaxation dynamics of water cluster anions (H(2)O)(n)(-) (11 ≤ n ≤ 80) formed in co-expansions with neon were investigated using one-photon and time-resolved photoelectron imaging. Unlike previous experiments with argon, water cluster anions exhibit only one isomer class, the tightly bound isomer I with approximately the same binding energy as clusters formed in argon. This result, along with a decrease in the internal conversion lifetime of excited (H(2)O)(n)(-) (25 ≤ n ≤ 40), indicates that clusters are vibrationally warmer when formed in neon. Over the ranges studied, the vertical detachment energies and lifetimes appear to converge to previously reported values.  相似文献   

11.
Density functional theory (DFT) at the hybrid B3LYP level has been applied to the germanium clusters Ge(9)(z) clusters (z = -6, -4, -3, -2, 0, +2, and +4) starting from three different initial configurations. Double-zeta quality LANL2DZ basis functions extended by adding one set of polarization (d) and one set of diffuse (p) functions were used. The global minimum for Ge(9)(2)(-) is the tricapped trigonal prism expected by Wade's rules for a 2n + 2 skeletal electron structure. An elongated tricapped trigonal prism is the global minimum for Ge(9)(4)(-) similar to the experimentally found structure for the isoelectronic Bi(9)(5+). However, the capped square antiprism predicted by Wade's rules for a 2n + 4 skeletal electron structure is only 0.21 kcal/mol above this global minimum indicating that these two nine-vertex polyhedra have very similar energies in this system. Tricapped trigonal prismatic structures are found for both singlet and triplet Ge(9)(6)(-), with the latter being lower in energy by 3.66 kcal/mol and far less distorted. The global minimum for the hypoelectronic Ge(9) is a bicapped pentagonal bipyramid. However, a second structure for Ge(9) only 4.54 kcal/mol above this global minimum is the C(2)(v)() flattened tricapped trigonal prism structure found experimentally for the isoelectronic Tl(9)(9)(-). For the even more hypoelectronic Ge(9)(2+), the lowest energy structure consists of an octahedron fused to two trigonal bipyramids. For Ge(9)(4+), the global minimum is an oblate (squashed) pentagonal bipyramid with two pendant Ge vertices.  相似文献   

12.
We report a photoelectron imaging study of the [O(N(2)O)(n)](-), 0or=4 (and up to at least n=9) signatures of an O(-) core are predominantly observed. Photofragmentation studies at 355 nm support these results.  相似文献   

13.
A study combining anion photoelectron spectroscopy and density functional theory calculations on the transition metal suboxide series, Nb(2)O(y)(-) (y = 2-5), is described. Photoelectron spectra of the clusters are obtained, and Franck-Condon simulations using calculated anion and neutral structures and frequencies are used to evaluate the calculations and assign transitions observed in the spectra. The spectra, several of which exhibit partially resolved vibrational structure, show an increase in electron affinity with increasing cluster oxidation state. Hole-burning experiments suggest that the photoelectron spectra of both Nb(2)O(2)(-) and Nb(2)O(3)(-) have contributions from more than one structural isomer. Reasonable agreement between experiment and computational results is found among all oxides.  相似文献   

14.
We report a combined photoelectron and vibrational spectroscopy study of the (H(2)O)(7)(-) cluster anions in order to correlate structural changes with the observed differences in electron binding energies of the various isomers. Photoelectron spectra of the (H(2)O)(7)(-) . Ar(m) clusters are obtained over the range of m=0-10. These spectra reveal the formation of a new isomer (I') for m>5, the electron binding energy of which is about 0.15 eV higher than that of the type I form previously reported to be the highest binding energy species [Coe et al., J. Chem. Phys. 92, 3980 (1990)]. Isomer-selective vibrational predissociation spectra are obtained using both the Ar dependence of the isomer distribution and photochemical depopulation of the more weakly (electron) binding isomers. The likely structures of the isomers at play are identified with the aid of electronic structure calculations, and the electron binding energies, as well as harmonic vibrational spectra, are calculated for 28 low-lying forms for comparison with the experimental results. The HOH bending spectrum of the low binding type II form is dominated by a band that is moderately redshifted relative to the bending origin of the bare water molecule. Calculations trace this feature primarily to the bending vibration localized on a water molecule in which a dangling H atom points toward the electron cloud. Both higher binding forms (I and I') display the characteristic patterns in the bending and OH stretching regions signaling electron attachment primarily to a water molecule in an AA binding site, a persistent motif found in non-isomer-selective spectra of the clusters up to (H(2)O)(50)(-).  相似文献   

15.
We report vibrational predissociation spectra of water cluster anions, (H(2)O)(n=)()(3)(-)(24)(-) in the HOH bending region to explore whether the characteristic red-shifted feature associated with electron binding onto a double H-bond acceptor (AA) water molecule survives into the intermediate cluster size regime. The spectra of the "tagged" (H(2)O)(n)()(-).Ar clusters indeed exhibit the signature AA band, but assignment of this motif to a particular isomer is complicated by the fact that argon attachment produces significant population of three isomeric forms (as evidenced by their photoelectron spectra). We therefore also investigated the bare clusters since they can be prepared exclusively in the high binding (isomer class I) form. Because the energy required to dissociate a water molecule from the bare complexes is much larger than the transition energies in the bending region, the resulting (linear) action spectroscopy selectively explores the properties of clusters with most internal energy content. The (H(2)O)(15)(-) predissociation spectrum obtained under these conditions displays a more intense AA feature than was found in the spectra of the Ar tagged species. This observation implies that not only is the AA motif present in the class I isomer, but also that it persists when the clusters contain considerable internal energy.  相似文献   

16.
Electron binding motifs in cluster anions of primary amides, (acetamide)(n)(-) and (propionamide)(n)(-), were studied with photoelectron spectroscopy. For both the amides, two band series due to distinct isomeric species in the multipole-bound states were found in the low electron binding energy region (<~0.4 eV) of the photoelectron spectra at the excitation wavelength of 1064 nm. In the case of acetamide, the isomer of higher band peak energies is predominant for 6≤ n ≤ 8, but it vanishes completely for n ≥ 9 to be replaced with the lower energy isomer. The same spectral behavior was seen for propionamide exhibiting an exception at n = 7. The isomers appearing in the lower and higher energy sides were attributed to the straight and folded forms of ladder-like hydrogen bond network structures, respectively, on the basis of density functional calculations. In the folded forms, the excess electron is held in the space between two terminal amide molecules of the ladder-like networks. Referring to calculations of potential energy curves with respect to the folding coordinate of the ladder-like networks, it is inferred that the major isomer alternation between n = 8 and 9 originates from an increase of stiffness of the molecular ladders depending on the cluster sizes. In photoelectron spectra at the 355 nm excitation, the valence anion state having a band peak around 2.5 eV was observed to emerge with threshold sizes of n = 13 and 9 for acetamide and propionamide, respectively. Static and dynamical effects of alkyl groups on the electron binding motifs are discussed in comparison with the previous study on formamide cluster anions.  相似文献   

17.
The B(9)(-) cluster was found previously to be an unprecedented molecular wheel containing an octacoordinate planar boron with D(8h) symmetry in a combined photoelectron spectroscopy (PES) and theoretical study [H. J. Zhai et al., Angew. Chem., Int. Ed. 42, 6004 (2003)]. However, the PES spectra of B(9)(-) exhibit minor features that cannot be explained by the global minimum D(8h) structure, suggesting possible contributions from low-lying isomers at finite temperatures. Here we present Car-Parrinello molecular dynamics with simulated annealing simulations to fully explore the potential energy surface of B(9)(-) and search for low-lying isomers that may account for the minor PES features. We performed density functional theory (DFT) calculations with different exchange-correlation functionals and ab initio calculations at various levels of theory with different basis sets. Two three-dimensional low-lying isomers were found, both of C(s) symmetry, 6.29 (C(s)-2) and 10.23 (C(s)-1) kcal/mol higher in energy than the D(8h) structure at the highest CCSD(T) level of theory. Calculated detachment transitions from the C(s)-2 isomer are in excellent agreement with the minor features observed in the PES spectra of B(9)(-). The B(9)(-) cluster proves to be a challenge for most DFT methods and the calculated relative energies strongly depend on the exchange-correlation functionals, providing an excellent example for evaluating the accuracies of various DFT methods.  相似文献   

18.
Iron-pyrene cluster anions, [Fe(m)(pyrene)(n)](-) (m = 1-2, n = 1-2) were studied in the gas phase by photoelectron spectroscopy, resulting in the determination of their electron affinity and vertical detachment energy values. Density functional theory calculations were also conducted, providing the structures and spin multiplicities of the neutral clusters and their anions as well as their respective electron affinity and vertical detachment energy values. The calculated magnetic moments of neutral Fe(1)(pyrene)(1) and Fe(2)(pyrene)(1) clusters suggest that a single pyrene molecule could be a suitable template on which to deposit small iron clusters, and that these in turn might form the basis of an iron cluster-based magnetic material. A comparison of the structures and corresponding photoelectron spectra for the iron-benzene, iron-pyrene, and iron-coronene cluster systems revealed that pyrene behaves more similarly to coronene than to benzene.  相似文献   

19.
Chromium-doped silicon clusters, CrSi(n) (-)(n = 3-12), were investigated with anion photoelectron spectroscopy and density functional theory calculations. The combination of experimental measurement and theoretical calculations reveals that the onset of endohedral structure in CrSi(n) (-) clusters occurs at n = 10 and the magnetic properties of the CrSi(n) (-) clusters are correlated to their geometric structures. The most stable isomers of CrSi(n) (-) from n = 3 to 9 have exohedral structures with magnetic moments of 3-5μ(B) while those of CrSi(10) (-), CrSi(11) (-), and CrSi(12) (-) have endohedral structures and magnetic moments of 1μ(B.).  相似文献   

20.
Electronic relaxation dynamics of water cluster anions   总被引:1,自引:0,他引:1  
The electronic relaxation dynamics of water cluster anions, (H(2)O)(n)(-), have been studied with time-resolved photoelectron imaging. In this investigation, the excess electron was excited through the p<--s transition with an ultrafast laser pulse, with subsequent electronic evolution monitored by photodetachment. All excited-state lifetimes exhibit a significant isotope effect (tau(D)2(O)/tau(H)2(O) approximately 2). Additionally, marked dynamical differences are found for two classes of water cluster anions, isomers I and II, previously assigned as clusters with internally solvated and surface-bound electrons, respectively. Isomer I clusters with n > or = 25 decay exclusively by internal conversion, with relaxation times that extrapolate linearly with 1/n toward an internal conversion lifetime of 50 fs in bulk water. Smaller isomer I clusters (13 < or = n < or = 25) decay through a combination of excited-state autodetachment and internal conversion. The relaxation of isomer II clusters shows no significant size dependence over the range of n = 60-100, with autodetachment an important decay channel following excitation of these clusters. Photoelectron angular distributions (PADs) were measured for isomer I and isomer II clusters. The large differences in dynamical trends, relaxation mechanisms, and PADs between large isomer I and isomer II clusters are consistent with their assignment to very different electron binding motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号