首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fracturing-fluid leak-off in fractured gas shale is a complex process involving multiple pore/fluid transports and interactions. However, water leak-off behavior has not been modeled comprehensively by considering the multi-pores and multi-mechanisms in shale with existing simulators. In this paper, we present the development of a comprehensive multi-mechanistic, multi-porosity, and multi-permeability water/gas flow model that uses experimentally determined formation properties to simulate the fracturing-fluid leak-off of hydraulically fractured shale gas wells. The multi-mechanistic model takes into account water transport driven by hydraulic convection, capillary and osmosis, gas transport caused by hydraulic convection, and salt ion transport caused by advection and diffusion. The multi-porosity includes hydraulic fracture millipores, organic nanopores, clay nanopores, and other inorganic micropores. The multi-permeability model accounts for all the important processes in shale system, including gas adsorption on the organics’ surface, multi-mechanistic clay/other inorganic mineral mass transfer, inorganic mineral/hydraulic fracture mass transfer, and injection from a hydraulically fractured wellbore. The dynamic water saturation and pressure profiles within clay and other inorganic matrices are compared, revealing the leak-off behavior of water in rock media with different physicochemical properties. In sensitivity analyses, cases with different clay membrane efficiency, volume proportion of source rock, connate water salinity, and saturation are considered. The impacts of shale properties on water fluxes through wellbore, hydraulic fracture and matrix, and the total injection and leak-off volumes of the well during the treatment of hydraulic fracturing are investigated. Results show that physicochemical properties in both organic and inorganic matrices affect the water leak-off behavior.  相似文献   

2.
Permeability is the most important parameter that describes gas flow characteristics in shale. Water saturation and effective pressure have a considerable effect on shale permeability. This paper presents the results of a laboratory study of the effects of water saturation and effective pressure on gas permeability in Carboniferous shales of the Qaidam Basin, China. The permeability of shale samples with varying water saturation (0–33 wt%) was measured at effective pressure of 6.9 to 27.59 MPa and at low mean pore pressure (<?6.89 MPa) at room temperature, using a pressure pulse decay permeameter. The results indicate that the water saturation and the effective pressure are the main factors affecting the shale permeability. Permeability of sample C034, which has a high clay content and is dominated by nanoscale slit-shaped pores, shows a large decrease (up to 90%) with increasing water saturation (from 0 to 31.7 wt%), depending on the effective pressure. A much larger permeability reduction with increasing water saturation fraction is associated with the swelling of clay minerals. For each sample with varying water saturation, our analyses revealed a consistent line relationship between log permeability and effective pressure variation. The impact of effective pressure on the measured permeability becomes more significant as water saturation increases. With increasing water saturation, the gas slippage factor decreases and calculated effective pore size increases, and gas–water flow in the shale samples occurs as channel flow. This study provides practical information for further studies of stress-dependent permeability of shale with water and the gas slippage effect in two-phase, gas–water flow.  相似文献   

3.
A reliable gas–water relative permeability model in shale is extremely important for the accurate numerical simulation of gas–water two-phase flow (e.g., fracturing fluid flowback) in gas-shale reservoirs, which has important implication for the economic development of gas-shale reservoir. A gas–water relative permeability model in inorganic shale with nanoscale pores at laboratory condition and reservoir condition was proposed based on the fractal scaling theory and modified non-slip boundary of continuity equation in the nanotube. The model not only considers the gas slippage in the entire Knudsen regime, multilayer sticking (near-wall high-viscosity water) and the quantified thickness of water film, but also combines the real gas effect and stress dependence effect. The presented model has been validated by various experiments data of sandstone with microscale pores and bulk shale with nanoscale pores. The results show that: (1) The Knudsen diffusion and slippage effects enhance the gas relative permeability dramatically; however, it is not obviously affected at high pressure. (2) The multilayer sticking effect and water film should not be neglected: the multilayer sticking would reduce the water relative permeability as well as slightly decrease gas relative permeability, and the film flow has a negative impact on both of the gas and water relative permeability. (3) The increased fractal dimension for pore size distribution or tortuosity would increase gas relative permeability but decrease the water relative permeability for a given saturation; however, the effect on relative permeability is not that notable. (4) The real gas effect is beneficial for the gas relative permeability, and the influence is considerable when the pressure is high enough and when the nanopores of bulk shale are mostly with smaller size. For the stress dependence, not like the intrinsic permeability, none of the gas or water relative permeability is sensitive to the net pressure and it can be ignored completely.  相似文献   

4.
Gas production from shale gas reservoirs plays a significant role in satisfying increasing energy demands. Compared with conventional sandstone and carbonate reservoirs, shale gas reservoirs are characterized by extremely low porosity, ultra-low permeability and high clay content. Slip flow, diffusion, adsorption and desorption are the primary gas transport processes in shale matrix, while Darcy flow is restricted to fractures. Understanding methane diffusion and adsorption, and gas flow and equilibrium in the low-permeability matrix of shale is crucial for shale formation evaluation and for predicting gas production. Modeling of diffusion in low-permeability shale rocks requires use of the Dusty gas model (DGM) rather than Fick’s law. The DGM is incorporated in the TOUGH2 module EOS7C-ECBM, a modified version of EOS7C that simulates multicomponent gas mixture transport in porous media. Also included in EOS7C-ECBM is the extended Langmuir model for adsorption and desorption of gases. In this study, a column shale model was constructed to simulate methane diffusion and adsorption through shale rocks. The process of binary \(\hbox {CH}_{4}{-}\hbox {N}_{2}\) diffusion and adsorption was analyzed. A sensitivity study was performed to investigate the effects of pressure, temperature and permeability on diffusion and adsorption in shale rocks. The results show that methane gas diffusion and adsorption in shale is a slow process of dynamic equilibrium, which can be illustrated by the slope of a curve in \(\hbox {CH}_{4}\) mass variation. The amount of adsorption increases with the pressure increase at the low pressure, and the mass change by gas diffusion will decrease due to the decrease in the compressibility factor of the gas. With the elevated temperature, the gas molecules move faster and then the greater gas diffusion rates make the process duration shorter. The gas diffusion rate decreases with the permeability decrease, and there is a limit of gas diffusion if the permeability is less than \(1.0\,\times \,10^{-15}\, \hbox { m}^{2}\). The results can provide insights for a better understanding of methane diffusion and adsorption in the shale rocks so as to optimize gas production performance of shale gas reservoirs.  相似文献   

5.
A multi-scale pore network model is developed for shale with the process-based method (PBM). The pore network comprises three types of sub-networks: the \(\upmu \)m-scale sub-network, the nm-scale pore sub-network in organic matter (OM) particles and the nm-scale pore sub-network in clay aggregates. Process-based simulations mimic shale-forming geological processes and generate a \(\upmu \)m-scale sub-network which connects interparticle pores, OM particles and clay aggregates. The nm-scale pore sub-networks in OM and clay are extracted from monodisperse sphere packing. Nm-scale throats in OM and clay are simplified to be cylindrical and cuboid-shaped, respectively. The nm-scale pore sub-networks are inserted into selected OM particles and clay aggregates in the \(\upmu \)m-scale sub-network to form an integrated multi-scale pore network. No-slip permeability is evaluated on multi-scale pore networks. Permeability calculations verify that shales permeability keeps decreasing when nm-scale pores and throats replace \(\upmu \)m-scale pores. Soft shales may have higher porosity but similar range of permeability with hard shales. Small compaction leads to higher permeability when nm-scale pores dominate a pore network. Nm-scale pore networks with higher interconnectivity contribute to higher permeability. Under constant shale porosity, the shale matrix with cuboid-shaped nm-scale throats has lower no-slip permeability than that with cylindrical throats. Different from previous reconstruction processes, the new reconstruction process first considers the porous OM and clay distribution with PBM. The influence of geological processes on the multi-scale pore networks is also first analyzed for shale. Moreover, this study considers the effect of OM porosities and different pore morphologies in OM and clay on shale permeability.  相似文献   

6.
7.
Pressure distribution and \(\hbox {CO}_{2}\) plume migration are two major interests in \(\hbox {CO}_{2}\) geologic storage as they determine the injectivity and storage capacity. In this study, we adopted a three-layer model comprising a storage formation and the over- and underlying seals and determined three distinct flow regions based on the vertical flux exchange of \(\hbox {CO}_{2}\) and native brine. Regions 1 and 2 showed \(\hbox {CO}_{2}\) flowing from the storage formation to adjacent seals with counter-flowing brine. The characteristics of these fluxes in Region 1 were governed by permeability change due to salt precipitation whereas buoyancy force controlled the flux pattern in Region 2. Region 3 showed brine flowing from storage formation toward the over- and underlying seals, which enabled the displaced brine to escape from the storage formation and make room for \(\hbox {CO}_{2}\) to store as well as reduce the pressure build-up. In the multi-layered model, the counter-flowing brine in flow Region 1 resulted in localized salt precipitation at the upper and lower boundary of storage formation. We assessed the bottom-hole pressure and \(\hbox {CO}_{2}\) mass in caprock with respect to reservoir size. While the formation thickness influenced the bottom-hole pressure in the early stage of injection, the horizontal extension of the reservoir was more influential to pressure build-up during the injection period, and to the stabilized pressure during the post-injection period. The \(\hbox {CO}_{2}\) mass in caprock gently increased during the injection period as well as during the post-injection period and reached about 4–5 % of injected \(\hbox {CO}_{2}\) . The percentage of escaped brine from the storage formation ranged from 80–100 % of the \(\hbox {CO}_{2}\) mass stored in the storage formation depending on the reservoir scale.  相似文献   

8.
The characterization of gas migration through low-permeability clay formations has been a focus of R&D programs for radioactive waste disposal, which is also of great importance for shale gas exploration, cap-rock behavior of hydrocarbon reservoirs, and \(\hbox {CO}_{2}\) sequestration. Laboratory tests have been performed on Opalinus Clay, a Mesozoic claystone that is being investigated in Switzerland as a potential host rock for the storage of nuclear waste. The laboratory program included specific water and air injections tests, as well as oedometer and isotropic compression tests. Undisturbed core samples have been retrieved from a shallow borehole in the Mont Terri Underground Research Laboratory (URL) and from a deep borehole in northern Switzerland. For the shallow cores from Mont Terri URL, largely linear-elastic deformations associated with the gas injection test could be inferred and the change in void ratio was accounted for by the pore compressibility. The corresponding change in permeability was obtained from the results of the water tests, indicating a log-linear relation between permeability and porosity. The derived porosity change and the corresponding change in permeability were implemented in the standard TOUGH2 code, which reproduced the measured gas test results using fitted water retention data derived from laboratory measurements. Similar air injection tests performed on Opalinus Clay cores from the borehole at greater depth showed overall similar behavior, but at lower porosities, lower permeability values, and lower compressibility. These cases indicated nonlinear behavior which was implemented using an effective stress-dependent porosity change and the associated change in permeability. In addition, the anisotropy associated with the bedding planes of the clay formation was considered by assuming different properties for “soft” and “hard” layers to account for storage capacity for the injected gas prior to gas breakthrough. The computed change in the overall porosity could be compared to the measured axial deformation during the gas injection test and was used for calibration of the parameters describing the relationship between the effective stress and porosity, as well as the corresponding change in permeability and capillary pressure.  相似文献   

9.
Cyclic injection, storage, and withdrawal of freshwater in brackish aquifers is a form of aquifer storage and recovery (ASR) that can beneficially supplement water supplies in coastal areas. A 1970s field experiment in Norfolk, Virginia, showed that clay dispersion in the unconsolidated sedimentary aquifer occurred because of cation exchange on clay minerals as freshwater displaced brackish formation water. Migration of interstitial clay particles clogged pores, reduced permeability, and decreased recovery efficiency, but a calcium preflush was found to reduce clay dispersion and lead to a higher recovery efficiency. Column experiments were performed in this study to quantify the relations between permeability changes and clay mineralogy, clay content, and initial water salinity. The results of these experiments indicate that dispersion of montmorillonite clay is a primary contributor to formation damage. The reduction in permeability by clay dispersion may be expressed as a linear function of chloride content. Incorporating these simple functions into a radial, cross-sectional, variable-density, ground-water flow and transport model yielded a satisfactory simulation of the Norfolk field test – and represented an improvement over the model that ignored changes in permeability. This type of model offers a useful planning and design tool for ASR operations in coastal clastic aquifer systems.  相似文献   

10.
钻井完井液浸泡弱化页岩脆性机制   总被引:3,自引:0,他引:3  
页岩脆性是页岩地层钻井、水力压裂设计的关键参数之一,目前针对钻井过程中工作液浸泡对页岩脆性的影响还未引起关注.通过开展钻井完井液浸泡前后页岩三轴力学实验,利用脆性评价模型分析了页岩脆性变化特征.结果表明,延长组页岩脆性强于龙马溪组页岩;油基和水基钻井完井液浸泡均能导致页岩脆性降低,且油基钻井完井液浸泡后的页岩脆性降低幅度更大;龙马溪组页岩浸泡后脆性减弱幅度较延长组页岩大.页岩脆性弱化机制包括:(1)由层理面胶结强度不同引起的脆性强弱差异;(2)由毛管自吸作用导致的高孔压、高应力强度因子、低临界断裂韧性;(3)由碱液侵蚀导致的页岩溶蚀孔形成及矿物颗粒碎裂;(4)由黏土矿物水化膨胀产生的膨胀应力;(5)由钻井完井液滤液润滑导致的页岩破裂面摩擦系数降低.延长组页岩层理面强度较龙马溪组页岩低,导致延长组页岩脆性强于龙马溪组页岩.其次,和水基钻井完井液相比,油基钻井完井液具有更大的自吸量、更高的pH值、更强的润滑性,因此,油基钻井完井液浸泡降低页岩脆性幅度更大.另外,由于龙马溪组页岩具有更小的润湿角、更强的毛管自吸和碱液侵蚀作用,相同浸泡条件下,龙马溪组页岩脆性降低幅度更大.本研究可为页岩地层钻井液性能优化、井壁稳定控制、水力压裂设计等提供理论指导.   相似文献   

11.
夏阳  邓英豪  韦世明  金衍 《力学学报》2023,55(3):616-629
在碳达峰的国策背景之下,页岩气成为传统能源向绿色清洁低碳能源转型的重要过渡和能源支点.压后页岩气藏流体流动力学成为高效开发页岩气的关键力学问题.文章将小尺度低导流天然裂缝等效升级为连续介质,建立有机质-无机质-天然裂缝三重连续介质模型,同时对大尺度高导流裂缝采用离散裂缝模型刻画,嵌入天然裂缝连续介质中,构建多重连续/离散裂缝模型.综合考虑吸附气的非平衡非线性解吸附和表面扩散,自由气的黏性流和克努森扩散,给出页岩气在多尺度复杂介质中的非线性耦合流动数学模型.提出多尺度扩展有限单元法对离散裂缝进行显式求解,创新性构建三类加强形函数捕捉离散裂缝的局部流场特征,解决了压后页岩海量裂缝及多尺度流动通道的流动模拟难题.文章提出的模型和方法既能准确刻画高导流裂缝对渗流的影响,又克服了海量多尺度离散裂缝导致计算量增大的问题.通过算例展示了压后页岩各连续介质的压力衰减规律,发现裂缝中自由气、有机质中自由气、无机质中吸附气依次滞后的压力(浓度)扩散现象,重点分析了吸附气表面扩散系数、自由气克努森扩散系数、天然裂缝连续介质渗透率和吸附气解吸附速率对页岩气产量的影响.文章重点解决压后页岩多尺度流动通道的表征和...  相似文献   

12.
部分致密油井压后关井一段时间,压裂液返排率普遍低于30%,但是致密油气井产量反而越高,这与压裂液毛细管力渗吸排驱原油有关。然而,致密油储层致密,物性差,渗流机理复杂,尚没有形成统一的自发渗吸模型。本文基于油水两相非活塞式渗流理论,建立了压后闷井期间压裂液在毛细管力作用下自发渗吸进入致密油储层的数学模型,采用数值差分方法进行求解,并分析了相关影响因素。结果显示渗吸体积、渗吸前缘移动距离与渗吸时间的平方根呈线性正相关关系,与经典Handy渗吸理论模型预测结果一致,说明毛细管力自发渗吸模型可靠性较高。数值计算结果表明毛细管水相扩散系数是致密储层自发渗吸速率的主控参数,毛细管水相扩散系数越高,自发渗吸速率越大。毛细管水相扩散系数随着含水饱和度先增加后减小;随着束缚水饱和度、油相和水相端点相对渗透率增加而增加;随着相渗特征指数、油水黏度比和残余油饱和度增加而减小。该研究有助于深入认识致密油储层压裂液渗吸机理,对优化返排制度、提高致密油井产量具有重要意义。  相似文献   

13.
We present a pore network model to determine the permeability of shale gas matrix. Contrary to the conventional reservoirs, where permeability is only a function of topology and morphology of the pores, the permeability in shale depends on pressure as well. In addition to traditional viscous flow of Hagen–Poiseuille or Darcy type, we included slip flow and Knudsen diffusion in our network model to simulate gas flow in shale systems that contain pores on both micrometer and nanometer scales. This is the first network model in 3D that combines pores with nanometer and micrometer sizes with different flow physics mechanisms on both scales. Our results showed that estimated apparent permeability is significantly higher when the additional physical phenomena are considered, especially at lower pressures and in networks where nanopores dominate. We performed sensitivity analyses on three different network models with equal porosity; constant cross-section model (CCM), enlarged cross-section model (ECM) and shrunk length model (SLM). For the porous systems with variable pore sizes, the apparent permeability is highly dependent on the fraction of nanopores and the pores’ connectivity. The overall permeability in each model decreased as the fraction of nanopores increased.  相似文献   

14.
“Stimulated reservoir volume”(SRV) makes shale gas production economic through new completion techniques including horizontal wells and multiple hydraulic fractures. However, the mechanism behind these treatments that provide sufficient permeability is not well understood. The effects of different stimulation treatments need to be further explored. To understand the effects of fracture surface roughness, fracture registration, confining pressure, proppant type and distribution mode, fiber and acidizing treatment on fracture permeability, a series of laboratory permeability experiments were performed on fractured cores from shale formation of Shengli Oilfield. The results of this study demonstrate that sedimentary bedding of shale has important influence on matrix permeability. At 35 MPa confining pressure, the permeability of aligned fracture (unpropped and without fracture offset) can increase about 1–3 orders of magnitude over shale matrix. The permeability of displaced fracture can increase about 1–2 orders of magnitude over the aligned fracture. The permeability of fracture propped with proppant can increase about 2–4 orders of magnitude over unpropped fracture. The greater the fracture surface roughness, the higher the permeability. The increasing degree of displaced fracture permeability is not proportional to the amount of fracture offset. In the microfracture of shale, the effect of ceramic proppant is still better than that of quartz sand, and the permeability of a centralized fairway distribution of proppant is about 1.2 times better than an even monolayer distribution of proppant. Under high pressure, proppant is easy to cause the break of fracture faces of brittle shale, and increase local fracture permeability to some extent. However, quartz sand are more easily broken to embed and block microcracks just made, which results in fracture permeability lower than that of ceramic proppant. At the same time, the argillation phenomenon is easy to happen on propped fracture faces of shale, which is one of the main factors that leads to a substantial decline in fracture permeability. The permeability of displaced fracture propped with proppant is greater than that of aligned fracture propped with proppant. Because of added fiber presence, the permeability of microfractures presented in SRV is greatly reduced. The pressure dependence of aligned fractures in shale obeys Walsh’s theory, but the pressure dependence of propped and displaced fractures in shale obeys Walsh’s law over a limited range of pressures. Deviations reflect proppant seating, proppant embedding and breaking. For shale formation with the high carbonate content, acidizing treatment should be carefully implemented. Experimental results may provide more valuable information for effective design of hydraulic fracturing in shale reservoir.  相似文献   

15.
This study investigated the dynamic displacement and dissolution of \(\hbox {CO}_{2}\) in porous media at 313 K and 6/8 MPa. Gaseous (\(\hbox {gCO}_{2}\)) at 6 MPa and supercritical \(\hbox {CO}_{2 }(\hbox {scCO}_{2}) \) at 8 MPa were injected downward into a glass bead pack at different flow rates, following upwards brine injection. The processes occurring during \(\hbox {CO}_{2}\) drainage and brine imbibition were visualized using magnetic resonance imaging. The drainage flow fronts were strongly influenced by the flow rates, resulting in different gas distributions. However, brine imbibition proceeded as a vertical compacted front due to the strong effect of gravity. Additionally, the effects of flow rate on distribution and saturation were analyzed. Then, the front movement of \(\hbox {CO}_{2}\) dissolution was visualized along different paths after imbibition. The determined \(\hbox {CO}_{2}\) concentrations implied that little \(\hbox {scCO}_{2}\) dissolved in brine after imbibition. The dissolution rate was from \(10^{-8}\) to \(10^{-9}\, \hbox {kg}\, \hbox {m}^{-3} \, \hbox {s}^{-1}\) and from \(10^{-6}\) to \(10^{-8}\, \hbox {kg}\, \hbox {m}^{-3} \, \hbox {s}^{-1}\) for \(\hbox {gCO}_{2}\) at 6 MPa and \(\hbox {scCO}_{2 }\) at 8 MPa, respectively. The total time for the \(\hbox {scCO}_{2}\) dissolution was short, indicating fast mass transfer between the \(\hbox {CO}_{2}\) and brine. Injection of \(\hbox {CO}_{2}\) under supercritical conditions resulted in a quick establishment of a steady state with high storage safety.  相似文献   

16.
Geological storage of \(\hbox {CO}_{2}\) in deep saline aquifers is achieved by injecting \(\hbox {CO}_{2}\) into the aquifers and displacing the brine. Although most of the brine is displaced, some residual groundwater remains in the rock pores. We conducted experiments to investigate factors that influence how much of this residual water remains after \(\hbox {CO}_{2}\) is injected. A rock sample was saturated with brines of two different salts. Supercritical \(\hbox {CO}_{2}\) was injected into the samples at aquifer temperature and pressure, and the displaced water and water–gas mixtures were collected and measured. The results show that deionized water drains more completely than either of the two brines, and NaCl brine drains more completely than \(\hbox {CaCl}_{2}\) brine. The ranking of the irreducible water saturation at the end of the experiment is deionized \(\hbox {water}<\hbox {NaCl brine } <\hbox {CaCl}_{2}\) brine. The process of drainage can be divided into three stages according to the drainage flow rates; the Pushing Drainage, Portable Drainage, and Dissolved Drainage stages. This paper proposed a capillary model which is used to interpret the mechanisms that characterize these three stages.  相似文献   

17.
As throat radius decrease to micro-nanoscale, seepage in unconventional reservoirs such as ultra-low permeability and tight reservoirs differs from conventional ones. Flow experiment in micropores is a promising approach to study characteristics of microflow. In this paper, a visual experimental device was established. Water flow through micropores with radius of 1.38–10.03 \(\upmu \hbox {m}\) was investigated, under 0.033–16 MPa/m. The results showed that in microscale, water flow did not agree with Poiseuille equation. Flow rate was lower than theoretical value and showed nonlinear characteristics. In the near wall area, due to the attraction of solid wall, a stagnant fluid layer was formed. It occupied flow space and thus lowered flow rate. Its thickness declined with pressure gradient increasing, which led to nonlinear flow characteristics. When the pressure gradient was very high, the thickness stopped declining and kept constant. Afterward, the flow transited to linear. In pores with smaller radius, the steady stagnant layer was thinner, but took a larger proportion of the flow space. For tubes of \(r = 1.38, 4.81, 10.03\,\upmu \hbox {m}\), the thickness of steady stagnant layer was 0.11, 0.23, 0.27 \(\upmu \hbox {m}\), respectively.  相似文献   

18.
Accurate monitoring of multiphase displacement processes is essential for the development, validation and benchmarking of numerical models used for reservoir simulation and for asset characterization. Here we demonstrate the first application of a chemically-selective 3D magnetic resonance imaging (MRI) technique which provides high-temporal resolution, quantitative, spatially resolved information of oil and water saturations during a dynamic imbibition core flood experiment in an Estaillades carbonate rock. Firstly, the relative saturations of dodecane (\(S_{\mathrm{o}})\) and water (\(S_{\mathrm{w}})\), as determined from the MRI measurements, have been benchmarked against those obtained from nuclear magnetic resonance (NMR) spectroscopy and volumetric analysis of the core flood effluent. Excellent agreement between both the NMR and MRI determinations of \(S_{\mathrm{o}}\) and \(S_{\mathrm{w}}\) was obtained. These values were in agreement to 4 and 9% of the values determined by volumetric analysis, with absolute errors in the measurement of saturation determined by NMR and MRI being 0.04 or less over the range of relative saturations investigated. The chemically-selective 3D MRI method was subsequently applied to monitor the displacement of dodecane in the core plug sample by water under continuous flow conditions at an interstitial velocity of \(1.27\times 10^{-6}\,\hbox {m}\,\hbox {s}^{-1}\) (\(0.4\,\hbox {ft}\,\hbox {day}^{-1})\). During the core flood, independent images of water and oil distributions within the rock core plug at a spatial resolution of \(0.31\,\hbox {mm}\times 0.39\,\hbox {mm} \times 0.39\,\hbox {mm}\) were acquired on a timescale of 16 min per image. Using this technique the spatial and temporal dynamics of the displacement process have been monitored. This MRI technique will provide insights to structure–transport relationships associated with multiphase displacement processes in complex porous materials, such as those encountered in petrophysics research.  相似文献   

19.
Shale can act as an unconventional gas reservoir with low permeability and complex seepage characteristics. Study of the apparent permeability and percolation behavior of shale gas is important in understanding the permeability of shale reservoirs, to evaluate formation damage, to develop gas reservoirs, and to design wells. This study simulated methane percolation at 298.15 K under inlet pressures ranging from 0.2 to 4 MPa and a constant outlet pressure of 0.1 MPa to investigate shale gas percolation behavior and apparent permeability. Five representative shale cores from the Carboniferous Hurleg and Huitoutala formations in the eastern Qaidam Basin, China, were analyzed. Each experiment measured the volume flow rate of methane and the inlet pressure. Pseudopressure approach was used to analyze high-velocity flow in shale samples, and apparent permeability at different pressures was calculated using the traditional method. A nonlinear apparent permeability model that considers diffusion and slippage is established from theory and experimental data fitting, and the shale gas flow characteristics affected by slippage and diffusion are analyzed. The results indicate that the pseudopressure formulation that considers the effect of gas properties on high-velocity flow produces a more accurate linear representation of the experimental data. The apparent gas permeability of shale consists of contributions from Darcy permeability, slippage, and diffusion. The apparent permeability and gas flow behavior in the studied shales strongly depended on pressure. The diffusion contribution increased greatly as pressure decreased from 2 to 0.2 MPa, and the smaller the shale permeability, the greater the relative contribution of diffusion flow. At pressures greater than 2 MPa, slip flow contributes \(\sim \)20% of the total flux, Darcy flow contributes up to 70%, and diffusion makes only a minor contribution. This study provides useful information for future studies of the mechanism of shale gas percolation and the exploration and development of Qaidam Basin shale gas specifically.  相似文献   

20.
韩强  屈展  叶正寅 《力学学报》2019,51(3):940-948
页岩强度是页岩油气开发所必需的基础技术参数之一,对页岩强度的研究贯穿于钻完井、压裂工艺施工的全过程.常规宏观室内实验存在试样获取困难、耗时较长,受井下工矿制约,地球物理方法获取资料品质欠佳且增加了井下设备卡、埋风险.因此,提出基于均匀化理论评价页岩微观多孔黏土强度的方法,进行多孔黏土组成与力学分析.基于耗散能原理和Drucker-Prager准则,开展了微观多孔黏土的强度与$\pi$函数的应变求解分析;讨论黏土颗粒与粒间孔隙的力学特性,建立多孔黏土的均匀化应变能;采用强度均匀化理论构建微观非线性函数模型,建立与多孔黏土组成、摩擦系数、内聚系数等参数相关的均匀化函数模型;基于纳米力学实验、量纲分析和有限元模拟,分析多孔黏土硬度、强度与组成的内在关系.研究结果表明,页岩微观多孔黏土的弹性模量和硬度与黏土堆积密度正相关,当黏土堆积密度一定时,硬度与内聚系数的比值受摩擦系数影响较大,为非线性递增;通过量纲分析和有限元模拟,求解页岩微观多孔黏土关于硬度--强度--堆积密度的$\pi$函数,揭示页岩微观黏土矿物的组成与力学性质的关系,为进一步深入研究页岩细观强度参数和宏观强度预测奠定基础.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号