首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 807 毫秒
1.
Shale can act as an unconventional gas reservoir with low permeability and complex seepage characteristics. Study of the apparent permeability and percolation behavior of shale gas is important in understanding the permeability of shale reservoirs, to evaluate formation damage, to develop gas reservoirs, and to design wells. This study simulated methane percolation at 298.15 K under inlet pressures ranging from 0.2 to 4 MPa and a constant outlet pressure of 0.1 MPa to investigate shale gas percolation behavior and apparent permeability. Five representative shale cores from the Carboniferous Hurleg and Huitoutala formations in the eastern Qaidam Basin, China, were analyzed. Each experiment measured the volume flow rate of methane and the inlet pressure. Pseudopressure approach was used to analyze high-velocity flow in shale samples, and apparent permeability at different pressures was calculated using the traditional method. A nonlinear apparent permeability model that considers diffusion and slippage is established from theory and experimental data fitting, and the shale gas flow characteristics affected by slippage and diffusion are analyzed. The results indicate that the pseudopressure formulation that considers the effect of gas properties on high-velocity flow produces a more accurate linear representation of the experimental data. The apparent gas permeability of shale consists of contributions from Darcy permeability, slippage, and diffusion. The apparent permeability and gas flow behavior in the studied shales strongly depended on pressure. The diffusion contribution increased greatly as pressure decreased from 2 to 0.2 MPa, and the smaller the shale permeability, the greater the relative contribution of diffusion flow. At pressures greater than 2 MPa, slip flow contributes \(\sim \)20% of the total flux, Darcy flow contributes up to 70%, and diffusion makes only a minor contribution. This study provides useful information for future studies of the mechanism of shale gas percolation and the exploration and development of Qaidam Basin shale gas specifically.  相似文献   

2.
Relative permeability of gas gains great significance in exploring unconventional gas. This paper developed a universal relative permeability model of gas, which is applicable for unconventional gas reservoirs such as coal, tight sandstone and shale. The model consists of the absolute relative permeability of gas and the gas slippage permeability. In the proposed model, the effects of water saturation and mean pore pressure on gas slippage permeability are taken into account. Subsequently, the evaluation of the model with existing model is done and then the validation of the model is made with data of tight sandstones, coals and shales from published literatures. The modeling results illustrate that a strong power-law relationship between relative permeability of gas and water saturation and the contribution of gas slippage permeability to relative permeability is determined by water saturation and mean pore pressure simultaneously. Furthermore, a sensitivity analysis of the impact of the parameters in the model is conducted and their effects are discussed.  相似文献   

3.
A reliable gas–water relative permeability model in shale is extremely important for the accurate numerical simulation of gas–water two-phase flow (e.g., fracturing fluid flowback) in gas-shale reservoirs, which has important implication for the economic development of gas-shale reservoir. A gas–water relative permeability model in inorganic shale with nanoscale pores at laboratory condition and reservoir condition was proposed based on the fractal scaling theory and modified non-slip boundary of continuity equation in the nanotube. The model not only considers the gas slippage in the entire Knudsen regime, multilayer sticking (near-wall high-viscosity water) and the quantified thickness of water film, but also combines the real gas effect and stress dependence effect. The presented model has been validated by various experiments data of sandstone with microscale pores and bulk shale with nanoscale pores. The results show that: (1) The Knudsen diffusion and slippage effects enhance the gas relative permeability dramatically; however, it is not obviously affected at high pressure. (2) The multilayer sticking effect and water film should not be neglected: the multilayer sticking would reduce the water relative permeability as well as slightly decrease gas relative permeability, and the film flow has a negative impact on both of the gas and water relative permeability. (3) The increased fractal dimension for pore size distribution or tortuosity would increase gas relative permeability but decrease the water relative permeability for a given saturation; however, the effect on relative permeability is not that notable. (4) The real gas effect is beneficial for the gas relative permeability, and the influence is considerable when the pressure is high enough and when the nanopores of bulk shale are mostly with smaller size. For the stress dependence, not like the intrinsic permeability, none of the gas or water relative permeability is sensitive to the net pressure and it can be ignored completely.  相似文献   

4.
Hydraulic fracturing has been recognized as the necessary well completion technique to achieve economic production from shale gas formation. However, following the fracturing, fluid–wall interactions can form a damaged zone nearby the fracture characterized by strong capillarity and osmosis effects. Here, we present a new reservoir multi-phase flow model which includes these mechanisms to predict formation damage in the aftermath of the fracturing during shut-in and production periods. In the model, the shale matrix is treated as a multi-scale porosity medium including interconnected organic, inorganic slit-shaped, and clay porosity fields. Prior to the fracturing, the matrix holds gas in the organic and the inorganic slit-shaped pores, water with dissolved salt in the inorganic slit-shaped pores and the clay pores. During and after fracturing, imbibition causes water invasion into the matrix, and then, the injected water–clay interaction may lead to clay-swelling pressure development due to osmosis. The swelling pressure gives additional stress to slit-shaped pores and cause permeability reduction in the inorganic matrix. We develop a simulator describing a system of three pores, two phases (aqueous and gaseous phases), and three components (\(\hbox {H}_{2}\hbox {O}, \hbox {CH}_{4}\), and salt), including osmosis and clay-swelling effect on the permeability. The simulation of aqueous-phase transport through clay shows that high swelling pressure can occur in clays as function of salt type, salt concentration difference, and clay-membrane efficiency. The new model is used to demonstrate the damage zone characteristics. The simulation of two-phase flow through the shale formation shows that, although fracturing is a rapid process, fluid–wall interactions continue to occur after the fracturing due to imbibition mechanism, which allows water to penetrate into the inorganic pore network and displace the gas in-place near the fracture. This water invasion leads to osmosis effect in the formation, which cause clay swelling and the subsequent permeability reduction. Continuing shale–water interactions during the production period can expand the damage zone further.  相似文献   

5.
页岩及致密砂岩储层富含纳米级孔隙,且储层条件下页岩孔隙(尤其无机质孔隙)及致密砂岩孔隙普遍含水,因此含水条件下纳米孔隙气体的流动能力的评价对这两类气藏的产能分析及生产预测具有重要意义.本文首先基于纳米孔隙内液态水及汽态水热力学平衡理论,量化了储层孔隙含水饱和度分布特征;进一步在纳米孔隙单相气体传质理论的基础上,考虑了孔隙含水饱和度对气体流动的影响;最终建立了含水饱和度与气相渗透率的关系曲线. 基于本文岩心孔隙分布特征,计算结果表明:储层含水饱和度对气体流动能力的影响不容忽视,在储层含水饱和度20%的情况下,气相流动能力与干燥情况相比将降低约10%;在含水饱和度40% 的情况下,气相流动能力将降低约20%.   相似文献   

6.
Fracturing-fluid leak-off in fractured gas shale is a complex process involving multiple pore/fluid transports and interactions. However, water leak-off behavior has not been modeled comprehensively by considering the multi-pores and multi-mechanisms in shale with existing simulators. In this paper, we present the development of a comprehensive multi-mechanistic, multi-porosity, and multi-permeability water/gas flow model that uses experimentally determined formation properties to simulate the fracturing-fluid leak-off of hydraulically fractured shale gas wells. The multi-mechanistic model takes into account water transport driven by hydraulic convection, capillary and osmosis, gas transport caused by hydraulic convection, and salt ion transport caused by advection and diffusion. The multi-porosity includes hydraulic fracture millipores, organic nanopores, clay nanopores, and other inorganic micropores. The multi-permeability model accounts for all the important processes in shale system, including gas adsorption on the organics’ surface, multi-mechanistic clay/other inorganic mineral mass transfer, inorganic mineral/hydraulic fracture mass transfer, and injection from a hydraulically fractured wellbore. The dynamic water saturation and pressure profiles within clay and other inorganic matrices are compared, revealing the leak-off behavior of water in rock media with different physicochemical properties. In sensitivity analyses, cases with different clay membrane efficiency, volume proportion of source rock, connate water salinity, and saturation are considered. The impacts of shale properties on water fluxes through wellbore, hydraulic fracture and matrix, and the total injection and leak-off volumes of the well during the treatment of hydraulic fracturing are investigated. Results show that physicochemical properties in both organic and inorganic matrices affect the water leak-off behavior.  相似文献   

7.
Zhang  Yongchao  Zeng  Jianhui  Cai  Jianchao  Feng  Sen  Feng  Xiao  Qiao  Juncheng 《Transport in Porous Media》2019,126(3):633-653

Shale reservoirs are characterized by very low permeability in the scale of nano-Darcy. This is due to the nanometer scale of pores and throats in shale reservoirs, which causes a difference in flow behavior from conventional reservoirs. Slip flow is considered to be one of the main flow regimes affecting the flow behavior in shale gas reservoirs and has been widely studied in the literature. However, the important mechanism of gas desorption or adsorption that happens in shale reservoirs has not been investigated thoroughly in the literature. This paper aims to study slip flow together with gas desorption in shale gas reservoirs using pore network modeling. To do so, the compressible Stokes equation with proper boundary conditions was applied to model gas flow in a pore network that properly represents the pore size distribution of typical shale reservoirs. A pore network model was created using the digitized image of a thin section of a Berea sandstone and scaled down to represent the pore size range of shale reservoirs. Based on the size of pores in the network and the pore pressure applied, the Knudsen number which controls the flow regimes was within the slip flow regime range. Compressible Stokes equation with proper boundary conditions at the pore’s walls was applied to model the gas flow. The desorption mechanism was also included through a boundary condition by deriving a velocity term using Langmuir-type isotherm. It was observed that when the slip flow was activated together with desorption in the model, their contributions were not summative. That, is the slippage effect limited the desorption mechanism through a reduction of pressure drop. Eagle Ford and Barnett shale samples were investigated in this study when the measured adsorption isotherm data from the literature were used. Barnett sample showed larger contribution of gas desorption toward gas recovery as compared to Eagle Ford sample. This paper has produced a pore network model to further understand the gas desorption and the slip flow effects in recovery of shale gas reservoirs.

  相似文献   

8.
9.
A multi-scale pore network model is developed for shale with the process-based method (PBM). The pore network comprises three types of sub-networks: the \(\upmu \)m-scale sub-network, the nm-scale pore sub-network in organic matter (OM) particles and the nm-scale pore sub-network in clay aggregates. Process-based simulations mimic shale-forming geological processes and generate a \(\upmu \)m-scale sub-network which connects interparticle pores, OM particles and clay aggregates. The nm-scale pore sub-networks in OM and clay are extracted from monodisperse sphere packing. Nm-scale throats in OM and clay are simplified to be cylindrical and cuboid-shaped, respectively. The nm-scale pore sub-networks are inserted into selected OM particles and clay aggregates in the \(\upmu \)m-scale sub-network to form an integrated multi-scale pore network. No-slip permeability is evaluated on multi-scale pore networks. Permeability calculations verify that shales permeability keeps decreasing when nm-scale pores and throats replace \(\upmu \)m-scale pores. Soft shales may have higher porosity but similar range of permeability with hard shales. Small compaction leads to higher permeability when nm-scale pores dominate a pore network. Nm-scale pore networks with higher interconnectivity contribute to higher permeability. Under constant shale porosity, the shale matrix with cuboid-shaped nm-scale throats has lower no-slip permeability than that with cylindrical throats. Different from previous reconstruction processes, the new reconstruction process first considers the porous OM and clay distribution with PBM. The influence of geological processes on the multi-scale pore networks is also first analyzed for shale. Moreover, this study considers the effect of OM porosities and different pore morphologies in OM and clay on shale permeability.  相似文献   

10.
基于REV尺度格子Boltzmann方法的页岩气流动数值模拟   总被引:1,自引:0,他引:1  
结合页岩扫描电镜图像,提出页岩气藏物理模型,采用表征单元体积(representative elementary volume,REV)尺度格子Boltzmann方法,考虑滑脱效应,模拟页岩气在页岩气藏中的流动.模拟结果表明,页岩气主要沿着天然裂缝窜进,但在有机质和无机质中也存在缓慢的流动,且有机质中的流速要略大于无机质中的流速.通过改变地层压力,研究地层压力对页岩气渗流特性的影响.研究结果表明,整个流场的速度和渗透率均随着地层压力的下降而增加.  相似文献   

11.
We present a pore network model to determine the permeability of shale gas matrix. Contrary to the conventional reservoirs, where permeability is only a function of topology and morphology of the pores, the permeability in shale depends on pressure as well. In addition to traditional viscous flow of Hagen–Poiseuille or Darcy type, we included slip flow and Knudsen diffusion in our network model to simulate gas flow in shale systems that contain pores on both micrometer and nanometer scales. This is the first network model in 3D that combines pores with nanometer and micrometer sizes with different flow physics mechanisms on both scales. Our results showed that estimated apparent permeability is significantly higher when the additional physical phenomena are considered, especially at lower pressures and in networks where nanopores dominate. We performed sensitivity analyses on three different network models with equal porosity; constant cross-section model (CCM), enlarged cross-section model (ECM) and shrunk length model (SLM). For the porous systems with variable pore sizes, the apparent permeability is highly dependent on the fraction of nanopores and the pores’ connectivity. The overall permeability in each model decreased as the fraction of nanopores increased.  相似文献   

12.
“Stimulated reservoir volume”(SRV) makes shale gas production economic through new completion techniques including horizontal wells and multiple hydraulic fractures. However, the mechanism behind these treatments that provide sufficient permeability is not well understood. The effects of different stimulation treatments need to be further explored. To understand the effects of fracture surface roughness, fracture registration, confining pressure, proppant type and distribution mode, fiber and acidizing treatment on fracture permeability, a series of laboratory permeability experiments were performed on fractured cores from shale formation of Shengli Oilfield. The results of this study demonstrate that sedimentary bedding of shale has important influence on matrix permeability. At 35 MPa confining pressure, the permeability of aligned fracture (unpropped and without fracture offset) can increase about 1–3 orders of magnitude over shale matrix. The permeability of displaced fracture can increase about 1–2 orders of magnitude over the aligned fracture. The permeability of fracture propped with proppant can increase about 2–4 orders of magnitude over unpropped fracture. The greater the fracture surface roughness, the higher the permeability. The increasing degree of displaced fracture permeability is not proportional to the amount of fracture offset. In the microfracture of shale, the effect of ceramic proppant is still better than that of quartz sand, and the permeability of a centralized fairway distribution of proppant is about 1.2 times better than an even monolayer distribution of proppant. Under high pressure, proppant is easy to cause the break of fracture faces of brittle shale, and increase local fracture permeability to some extent. However, quartz sand are more easily broken to embed and block microcracks just made, which results in fracture permeability lower than that of ceramic proppant. At the same time, the argillation phenomenon is easy to happen on propped fracture faces of shale, which is one of the main factors that leads to a substantial decline in fracture permeability. The permeability of displaced fracture propped with proppant is greater than that of aligned fracture propped with proppant. Because of added fiber presence, the permeability of microfractures presented in SRV is greatly reduced. The pressure dependence of aligned fractures in shale obeys Walsh’s theory, but the pressure dependence of propped and displaced fractures in shale obeys Walsh’s law over a limited range of pressures. Deviations reflect proppant seating, proppant embedding and breaking. For shale formation with the high carbonate content, acidizing treatment should be carefully implemented. Experimental results may provide more valuable information for effective design of hydraulic fracturing in shale reservoir.  相似文献   

13.
A large amount of nano-pores exists in pore clusters in shale gas reservoirs. In addition to the multiple transport regimes that occur on the nanoscale, the pore space is another major factor that significantly affects the shale gas recoverability. An investigation of the pore-scale shale gas flow is therefore important, and the results can be used to develop an effective cluster-scale pore network model for the convenient examination of the process efficiency. Focused ion beam scanning electron microscope imaging, which enables the acquisition of nanometre-resolution images that facilitate nano-pore identification, was used in conjunction with a high-precision pore network extraction algorithm to generate the equivalent pore network for the simulation of Darcy and shale gas flows through the pores. The characteristic parameters of the pores and the gas transport features were determined and analysed to obtain a deeper understanding of shale gas flow through nanoscale pore clusters, such as the importance of the throat flux–radius distribution and the variation of the tortuosity with pressure. The best parameter scheme for the proposed effective model of shale gas flow was selected out of three derived schemes based on the pore-scale prediction results. The model is applicable to pore-scale to cluster-scale shale gas flows and can be used to avoid the multiple-solution problems in the study of gas flows. It affords a foundation for further study to develop models for shale gas flows on larger scales.  相似文献   

14.
宋文辉  姚军  张凯 《力学学报》2021,53(8):2179-2192
页岩储层孔隙结构复杂, 气体赋存方式多样. 有机质孔隙形状对受限空间气体吸附和流动规律的影响尚不明确, 导致难以准确认识页岩气藏气体渗流机理. 为解决该问题, 本文首先采用巨正则蒙特卡洛方法模拟气体在不同形状有机质孔隙(圆形孔隙、狭长孔隙、三角形孔隙、方形孔隙)内吸附过程, 发现不同形状孔隙内吸附规律符合朗格缪尔单层吸附规律, 分析了绝对吸附量、过剩吸附浓量、气体吸附参数随孔隙尺寸、压力的变化, 研究了孔隙形状对气体吸附的影响. 在明确不同形状有机质孔隙内气体热力学吸附规律基础上, 建立不同形状有机质孔隙内吸附气表面扩散数学模型和考虑滑脱效应的自由气流动数学模型, 结合分子吸附模拟结果研究了不同孔隙形状、孔隙尺寸有机质孔隙内吸附气流动与自由气流动对气体渗透率的贡献. 结果表明, 狭长孔隙内最大吸附浓度和朗格缪尔压力最高, 吸附气表面扩散能力最弱. 孔隙半径5 nm以上时, 吸附气表面扩散对气体渗透率影响可忽略. 本文研究揭示了页岩气藏实际生产过程中有机质孔隙形状对页岩气吸附和流动能力的影响机制.   相似文献   

15.
More and more attention has been paid to the oil and gas flow mechanisms in shale reservoirs. The solid–fluid interaction becomes significant when the pores are in the nanoscale. The interaction changes the fluid’s physical properties and leads to different flow mechanisms in shale reservoirs from those in conventional reservoirs. By using a Simplified Local Density–Peng Robinson transport model, we consider the density and viscosity profiles, which result from solid–fluid interaction. Gas rarefaction effect is negligible at high pressure, so we assume it is viscous flow. Considering the density- and viscosity-changing effects, we proposed a slit permeability model. The velocity profiles are obtained by this newly established model. This proposed model is validated by matching the density profile and velocity profile from molecular dynamic simulation. Then, the effects of pressure and pore size on gas and oil flow mechanisms are also studied in this work. The results show that both gas and oil exhibit enhanced flow rates in nanopores. Gas-phase flow in nanopores is dominated by the density-changing effect (adsorption), while the oil-phase flow is mainly controlled by the viscosity-changing effect. Both gas and oil permeability quickly decrease to the Darcy permeability when the slit aperture becomes large. The results reported in this work are representative and should significantly help us understand the mechanisms of oil and gas flow in shale reservoirs.  相似文献   

16.
In the course of stimulation and fluid production, the chemical fluid–rock equilibrium of a geothermal reservoir may become disturbed by either temperature changes and/or an alteration of the fluid chemistry. Consequently, dissolution and precipitation reactions might be induced that result in permeability damage. In connection with the field investigations at a deep geothermal doublet, complementary laboratory-based research is performed to address these effects. The reservoir is located at a depth of 4100 to 4200 m near Groß Schönebeck within the Northeast German Basin, 50 km north of Berlin, Germany. Within the reservoir horizon, an effective pressure of approximately 45 MPa and a temperature of 150°C are encountered. Furthermore, the Lower Permian (Rotliegend) reservoir rock is saturated with a highly saline Ca–Na–Cl type formation fluid (TDS ≈ 255 g/l). Under these conditions we performed two sets of long-term flow-through experiments. The pore fluid used during the first and the second experiment was a 0.1 molar NaCl-solution and a synthetic Ca–Na–Cl type fluid with the specifications as above, respectively. The maximum run duration was 186 days. In detail, we experimentally addressed: (1) the effect of long-term flow on rock permeability in connection with possible changes in fluid chemistry and saturation; (2) the occurrence and consequences of baryte precipitation; and (3) potential precipitations related to oxygen-rich well water invasion during water-frac stimulation. In all substudies petrophysical experiments related to the evolution of rock permeability and electrical conductivity were complemented with microstructural investigations and a chemical fluid analysis. We also report the technical challenges encountered when corrosive fluids are used in long-term in situ petrophysical experiments. After it was assured that experimental artifacts can be excluded, it is demonstrated that the sample permeability remained approximately constant within margins of  ±50 % for nearly six months. Furthermore, an effect of baryte precipitation on the rock permeability was not observed. Finally, the fluid exchange procedure did not alter the rock transport properties. The results of the chemical fluid analysis are in support of these observations. In both experiments the electrical conductivity of the samples remained unchanged for a given fluid composition and constant p-T conditions. This emphasizes its valuable complementary character in determining changes in rock transport properties during long-term flow-through experiments when the risk of experimental artifacts is high.  相似文献   

17.
页岩中的孔隙直径通常为纳米量级,基于连续流的达西定律已不能描述纳米级孔隙内的气体流动规律,一般采用附加滑移边界条件的Navier-Stokes方程对其进行描述. 由此可导出与压力相关的渗透率公式(称为"视渗透率"),并用来修正达西定律.因而,渗透率修正方法研究成为页岩气流动研究的热点之一.首先,基于Hagen-Poiseuille 流推导出一般形式二阶滑移模型下的速度分布和流量公式,并推导出相应的渗透率修正公式.该渗透率修正公式基本能将现有的滑移速度模型统一表达为对渗透率的修正. 基于一般形式的渗透率修正公式,重点研究了Maxwell, Hsia, Beskok与Ng 滑移模型速度分布渗透率修正系数、及其对井底压力的影响;提出了基于Ng 滑移速度模型的渗透率修正公式. 基于页岩实际储层温压系统及孔隙分布,计算了Kn 范围及储层条件下页岩气的流动形态,表明页岩气流动存在滑移流、过渡流与分子自由流. 而Ng 模型能描述Kn<88 的滑移流、过渡流、自由分子流的流量规律,因此可以用于描述页岩实际储层中页岩气的流动特征. 计算表明,随着Kn 的增加,不同滑移模型下的渗透率修正系数差异增大.Maxwell与Hsia模型适用于滑移流与过渡流早期,Beskok与Ng 模型可描述自由分子流下的流动规律,但二者在虚拟的孔径均为10nm页岩中,井底压力的差别开始显现;在虚拟的孔径均为1nm页岩中,井底压力的差别开始明显.   相似文献   

18.
Shale samples consist of two major components: organic matter (OM) and inorganic mineral component (iOM). Each component has its distinct pore network topology and morphology, which necessitates generating a model capable of distinguishing the two media. We constructed an object-based model using the OM and iOM composition of shale samples. In the model, we integrated information such as OM population and size distribution, as well as its associated pore-size distribution. For the iOM part, we used mineralogy and pore-size information derived from X-ray diffraction, scanning electron microscopy, and nitrogen sorption measurements. Our proposed model results in millimeter-scale 2D realizations of shale samples by honoring OM and mineral types, their compositions, shapes, and size distributions. The model can capture heterogeneities smaller than 1 mm. We studied the effects of different gas flow processes and found that Knudsen diffusion and gas slippage dominate the flow, but surface diffusion has little impact on total gas flow.  相似文献   

19.
页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影响   总被引:1,自引:0,他引:1  
考虑储层原始含水特征,甲烷在页岩的吸附特征属于气液固三相复杂作用结果,水分在很大程度上影响页岩吸附能力,将成为制约页岩气资源量评估可靠性的主要原因之一.鉴于页岩水分主要分布于黏土等无机矿物孔隙内部,分析了甲烷-水膜-页岩黏土三相作用特征,结果表明:甲烷在干燥黏土表面吸附满足气固界面Langmuir吸附特征,在黏土水膜表面吸附满足气液界面Gibbs吸附特征,在气液固三相作用下满足"气固"与"气液"界面混合吸附特征;同时研究还发现:不同尺度孔隙内含水饱和度分布特征存在差异,部分小孔隙可以被水分充满,而大孔隙仅吸附一定厚度水膜.因此,水分对甲烷吸附能力的影响主要表现为两个方面:小孔隙被水分阻塞而失去吸附能力;大孔隙表面水膜改变甲烷吸附特征(气固界面吸附转变为气液界面吸附),以黏土样品为例,两者综合效应可以致使甲烷吸附能力降低约90%.从微观角度揭示了水分对页岩吸附能力的影响机理,将为建立合理评价页岩吸附气含量的方法奠定理论基础.  相似文献   

20.
A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The continuous inhomogeneous models of equivalent porosity and permeability are proposed for the whole shale gas reservoir including the hydraulic fracture, the micro-fracture, and the matrix regions. The corresponding semi-analytical method is developed by transforming the nonlinear partial differential governing equation into the integral equation and the numerical discretization. The non-linear multi-scale effects of slippage and diffusion and the pressure dependent effect of desorption on the shale gas production are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号