首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 720 毫秒
1.
2.
Physical model experiments were conducted to observe the migration of light non-aqueous phase liquids (LNAPL) in a double-porosity soil medium. The double-porosity characteristics of the soil were simulated through aggregation of kaolin which resulted in well-defined intra-aggregate and inter-aggregate pores. Digital images were collected to monitor LNAPL (modeled by toluene) migration. A special experimental setup was developed to enable the instantaneous capture of the LNAPL migration around the whole soil column using a single digital camera. An image processing module was applied to the captured images and the results plotted using a surface mapping programme. Events observed during the duration of the experiments were discussed. It was found that the LNAPL flowed much faster in the aggregated soil as compared to a single-porosity soil. The wettability of the fluid and the capillary pressure characteristics were demonstrated to be influential factors in immiscible fluids migration when the soil fabric showed highly contrasting porosity values.  相似文献   

3.
A smoothed particle hydrodynamics model was developed to simulate the flow of mixtures of aqueous and non-aqueous phase liquids in porous media and the dissolution of the non-aqueous phase in the aqueous phase. The model was used to study the effects of pore-scale heterogeneity and anisotropy on the steady state dense non-aqueous phase liquid (DNAPL) saturation when gravity driven DNAPL displaces water from initially water saturated porous media. Pore-scale anisotropy was created by using co-oriented non-overlapping elliptically shaped grains to represent the porous media. After a steady state DNAPL saturation was reached, water was injected until a new steady state DNAPL saturation was reached. The amount of trapped DNAPL was found to be greater when DNAPL is displaced in the direction of the major axes of the soil grains than when it is displaced in the direction of the minor axes of the soil grains. The amount of trapped DNAPL was also found to increase with decreasing initial saturation of the continuous DNAPL phase. For the conditions used in our simulations, the saturation of the trapped DNAPL with a smaller initial DNAPL saturation was more than 3 times larger than the amount of trapped DNAPL with a larger initial saturation. These simulations were carried out assuming that the DNAPL did not dissolve in water. Simulations including the effect of dissolution of DNAPL in the aqueous phase were also performed, and effective (macroscopic) mass transfer coefficients were determined. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

4.
Groundwater contamination by dense nonaqueous phase liquids (DNAPLs) has received increasing attention in the last decade. The fingering process of DNAPL migration in porous media remains an incompletely understood subject. The main reason is that natural porous media are opaque and hence very few visualizations are available. This paper presents the visual results of two-dimensional experiments in a glass tank in which DNAPL penetrated into water-saturated homogeneous porous media. The results provide a clear reference for conceptual models of DNAPL finger development due to immiscible flow instabilities. The fingering process can be divided into two stages, that is, the finger initiation stage and the finger elongation stage. At the finger initiation stage, many DNAPL protuberances appear at the interface between tetrachloroethylene (PCE) and water along the surface of the porous media. During the finger elongation stage, some relatively larger protuberances develop into primary fingers. Secondary fingers may develop on the existing primary fingers. The fingers grew downwardly in a winding manner with the mechanisms of shielding, tip-growing, splitting, and coalescing. The fingers grew linearly with time and had simi-lar growth rate at the finger elongation stage. The average wavelength (space between fingers) of the primary fingers was 0.051m and the average PCE content in the region with fingers was 2.5% (7.0% saturation).  相似文献   

5.
This review paper addresses the integration of advanced visualization techniques into the analysis of volumetric vector fields obtained by experimental measurement techniques such as holographic PIV, tomographic PIV, 3D PTV or defocusing PIV. The paper follows the idea of the pipeline process for flow visualization focusing on experimental data generation and advanced visualization techniques. The paper tries to help the experimentalist navigating the landscape of recently developed volumetric measurement techniques and advanced visualization techniques. The processing steps and related difficulties are illustrated with the transitional backward facing step flow experiment at Re h = 4,440. The paper shows the usage of flow visualization for quantitative volumetric PIV data analysis.  相似文献   

6.
Commonly, capillary pressure–saturation–relative permeability (P cSK r) relationships are obtained by means of laboratory experiments carried out on soil samples that are up to 10–12 cm long. In obtaining these relationships, it is implicitly assumed that the soil sample is homogeneous. However, it is well known that even at such scales, some micro-heterogeneities may exist. These heterogeneous regions will have distinct multiphase flow properties and will affect saturation and distribution of wetting and non-wetting phases within the soil sample. This, in turn, may affect the measured two-phase flow relationships. In the present work, numerical simulations have been carried out to investigate how the variations in nature, amount, and distribution of sub-sample scale heterogeneities affect P cSK r relationships for dense non-aqueous phase liquid (DNAPL) and water flow. Fourteen combinations of sand types and heterogeneous patterns have been defined. These include binary combinations of coarse sand imbedded in fine sand and vice versa. The domains size is chosen so that it represents typical laboratory samples used in the measurements of P cSK r curves. Upscaled drainage and imbibition P cSK r relationships for various heterogeneity patterns have been obtained and compared in order to determine the relative significance of the heterogeneity patterns. Our results show that for micro-heterogeneities of the type shown here, the upscaled P cS curve mainly follows the corresponding curve for the background sand. Only irreducible water saturation (in drainage) and residual DNAPL saturation (in imbibition) are affected by the presence and intensity of heterogeneities.  相似文献   

7.
An alternative analytical solution to the system of equations for fluid flow through a double-porosity medium with a boundary condition of an equipotential surface is given in this paper. The problem is reduced to solving an integral equation. The solution is straight-forward, and involves only ordinary Bessel functions. Numerical results show that D, the ratio of matrix system permeability to fracture system permeability, has a strong effect on the two semilog straight lines characteristic of the pressure response in a double-porosity medium. As D increases from zero (the Warren-Root model) to one, the first semilog straight line moves closer to the second. This is similar to the effect of increasing ω, the ratio of storage capacity of the fracture system to total storage capacity, in the Warren-Root model which neglects the flow within matrix blocks.  相似文献   

8.
The mechanism of migration of high-density solutions injected into fresh water was studied in the laboratory by physical models. Fifty-four laboratory tests were performed using a sand box constructed of transparent plastic. This physical model represented a portion of the groundwater flow. A high-density flow was simulated using solutions of various densities and chemical composition. It was found that migration of high-Density solutions in ground water is in many instances governed by the relation between the density of high-density solution and that of the ground water. Peculiarities of temporal and spatial contaminant distribution in the dispersion halo, the effect of filtration flow velocity, the relationship of flowrates between the fresh-water and contaminant flows, and the impact of the model boundaries and gravity were determined. Dependence of the dispersion haloes shape upon the structure of the fresh-water flow is described. The paper examines migration of low-density solutions over high-density solutions and the behavior of high-density solutions under conditions of discharge at the surface. The results show that the migration of high-density solutions is distinctly three-dimensional, and its prediction is possible only when based on three-dimensional numerical models.  相似文献   

9.
This paper examines the two-phase flow for a horizontal well penetrating a naturally fractured reservoir with edge water injection by means of a fixed streamline model. The mathematical model of the vertical two-dimensional flow or oil-water for a horizontal well in a medium with double-porosity is established, and whose accurate solutions are obtained by using the characteristic method. The saturation distributions in the fractured system and the matrix system as well as the formula of the time of water free production are presented. All these results provide a theoretical basis and a computing method for oil displacement by edge water from naturally fractured reservoirs.  相似文献   

10.
TWO-PHASEFLOWFORAHORIZONTALWELLPENETRATINGANATURALLYFRACTUREDRESERVOIRWITHEDGEWATERINJECTIONGuoDali(郭大立)LiuCiqun(刘慈群)(Receivc...  相似文献   

11.
TWO-PHASEFLOWFORAHORIZONTALWELLPENETRATINGANATURALLYFRACTUREDRESERVOIRWITHEDGEWATERINJECTIONGuoDali(郭大立)LiuCiqun(刘慈群)(Receive...  相似文献   

12.
Permeability of the Fluid-Filled Inclusions in Porous Media   总被引:1,自引:0,他引:1  
In this article, we propose an approach to obtain the equivalent permeability of the fluid-filled inclusions embedded into a porous host in which a fluid flow obeys Darcy’s law. The approach consists in the comparison of the solutions for one-particle problem describing the flow inside the inclusion, firstly, by the Stokes equations and then by using Darcy’s law. The results obtained for spheres (3D) and circles (2D) demonstrate that the inclusion equivalent permeability is a function of its radius and, additionally, depends on the host permeability. Based on this definition of inclusion permeability and using effective medium method, we have calculated the effective permeability of the double-porosity medium composed of the permeable matrix (with small scale pores) and large scale secondary spherical pores.  相似文献   

13.
单裂缝中携砂液流动规律研究   总被引:3,自引:0,他引:3  
裂缝中携砂液流动是一种固液两相流,携砂液的运移与支撑剂的铺置是水力压裂裂缝保持导流能力的关键.本文基于FLUENT流体计算软件,采用双流体模型,将颗粒看作拟流体,携砂液按照牛顿流体处理,分析了支撑剂体积分数α_s、阿基米德数Ar、颗粒雷诺数Re以及裂缝入口边界对流动规律的影响.研究结果表明:携砂液在裂缝中的流动过程中,发展成为支撑剂体积分数不同的四个区域,包括砂堤区、颗粒悬浮区、颗粒滚流区和无砂区;支撑剂的沉降程度随着支撑剂体积分数和阿基米德数的增加而增加,而随着雷诺数增加而降低;入口为网眼型时,进入裂缝后过流面积的增加导致流速突降,使得支撑剂更容易在入口处产生堆积,在同一入口流速下,较均匀入口的工况铺砂高度大.  相似文献   

14.
The direct shear apparatus was developed for soil testing because it reproduced the shear failure surfaces that formed a part of the failure mechanism of many geotechnical systems. Typical shear tests on dense sands show a softening load:displacement response which is associated with significant volumetric expansion. While shear localisations can be detected from discontinuities in marker layers, the change in density can be detected using radiography. The progressive formation of shear localisations is readily observed in situations which impose a discontinuity of boundary displacement and these can naturally be interpreted as precursors to a failure mechanism. However, more subtle patterns of volumetric strain or density localisation can be observed in situations where no such obvious boundary displacement discontinuity exists but the sand body is subjected to a more general shearing. Such patterns have a structure which is clearly related to the size of the sand particles. Several examples of such patterns are presented and implications for soil testing and for model tests on soils are discussed.  相似文献   

15.
利用真空预压法处理吹填土时,孔隙水压力变化常常反映土体固结程度的好坏。通过6个模型箱试验,监测不同排水系统下孔隙水压力变化,确定有效排水体间距。研究发现0.4m间距的土内孔压下降效果比0.8m间距的土内孔压下降效果好; 排水体内的孔隙水压力与排水体类型有关,且距离排水体10cm处土体内的孔隙水压力仅为排水体内孔隙水压力的1/2弱; 滤膜排水系统中的吹填土孔隙水压力下降幅度最快,B型排水板系统次之,而砂井系统最慢。另外,对于吹填土而言,排水体有效间距介于0.4m与0.8m之间,其中滤膜的有效间距最大,B型排水板次之,砂井远小于前两者。  相似文献   

16.
Transport in Porous Media - The development of a macroscopic model for solute transport coupled with unsaturated water flow in double-porosity media is presented in this work, by using the...  相似文献   

17.
Adopting a two-temperature and two-velocity model, appropriate to a bidisperse porous medium (BDPM) proposed by Nield and Kuznetsov (2008), the classical steady, mixed convection boundary layer flow about a horizontal, isothermal circular cylinder embedded in a porous medium has been theoretically studied in this article. It is shown that the boundary layer analysis leads to expressions for the flow and heat transfer characteristics in terms of an inter-phase momentum parameter, a thermal diffusivity ratio, a thermal conductivity ratio, a permeability ratio, a modified thermal capacity ratio, and a buoyancy or mixed convection parameter. The transformed partial differential equations governing the flow and heat transfer in the f-phase (the macro-pores) and the p-phase (the remainder of the structure) are solved numerically using a very efficient implicit finite-difference technique known as Keller-box method. A good agreement is observed between the present results and those known from the open literature in the special case of a traditional Darcy formulation (monodisperse system).  相似文献   

18.
In this paper, a microscopic visualization experiment is conducted to explore the heterogeneous flow pattern of micro polymer particles in micron pore. A capillary bundle network model for micro polymer particles in porous media is established. The migration and retention mechanism of polymer particles can be clearly observed in the experiment and simulated with this numerical model. The result demonstrates that the block of large particles is one of the main factors by which micro polymer particles increase the flow resistance. The simulation results are consistent with the experimental results.  相似文献   

19.
As the effects of cavitation in valves are devastating, the choice of the correct valve for a given operating range is crucial. For this, the valve characteristic is needed, whereby one side of the operating range depends on the determination of the incipient cavitation.In this paper, the visualization method for incipient cavitation detection is presented. For the purpose of comparison, pressure oscillations inside the pipeline were simultaneously measured with a hydrophone. The effect of operating pressure was studied for two different openings of the valve.For each operating point of incipient cavitation, corresponding points were measured for developed cavitation and no-cavitation state, based on a constant-portion change of volumetric flow rate with regard to the incipient cavitation volumetric flow rate. The visualization and hydrophone signals were compared.The visualization method proved efficiency over hydrophone measurements because it is more sensitive to cavitation and the signal is independent of the operating pressure. The main drawback is the preparation of the observation window.  相似文献   

20.
In recent years, attempts have been made to deploy robots for use in various activities such as planetary exploration, post-tsunami seashore reconnaissance, and volcano investigations. These robots may have to move on soft terrain. The movement of sand or soil particles under the wheels or tracks greatly affects the robot’s ability to maneuver. There is a simple but difficult problem with measuring particle movement: the sand and soil particles beneath the surface are not visible. Only 2D visualization techniques that take a surface picture of the ground or use transparent boards are available. A nuclear 3D imaging technique called positron emission particle tracking (PEPT) was developed at the University of Birmingham for this purpose. PEPT detects pairs of gamma rays emitted by a positron-emitting radionuclide of a tracer particle, which produces an image of the tracer. Thus, the overarching goal of this study was to explore the 3D terramechanics between terrain particles and a wheel or track using PEPT. As an initial step, this paper introduces an imaging technique for standard sand under a rotating wheel using PEPT and presents some images of sand particles under various conditions. Absolute displacements along the longitudinal, vertical, and lateral axes are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号