首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In gauge theory of gravity, there is direct coupling between the spin of a particle and gravitomagnetic field, which will affect Landau level. In the surface of a neutron star or near a black hole, the coupling energy between spin and gravitomagnetic field can be large and detectable. Precise measurement of the position of spectrum lines of the corresponding emission or absorption can help us to determine the gravitomagnetic field and electromagnetic field simultaneously. The ratio ΔEe/ΔEp can be served as a quantitative criteria of black hole. In GRBs or X-ray pulsar, absorption spectral lines of electron were observed. If the absorption spectral lines of electron, neutron and proton can be observed simultaneously, using the method given in this paper, we can determine the gravitomagnetic field in the surface of the star, and discriminate black hole from neutron star.  相似文献   

2.
Cosmological gamma-ray bursts (GRBs) appear as the brightest transient phenomena in the Universe. The nature of their central engine is a missing link in the theory of fireballs to stellar mass progenitors, and may be associated with low mass black holes. In contact with an external magnetic field B, black hole spin produces a gravitational potential on the wave function of charged particles. We show that a rapidly rotating black hole of mass M produces outflow from initially electrostatic equilibrium with normalized isotropic emission approximately 10(48)(B/B(c))(2)(M/7M)(2)sin (2) theta erg/s, where B(c) = 4.4x10(13) G. The half-opening angle satisfies theta >or = square root[B(c)/3B]. The outflow proposed as input to GRB fireball models.  相似文献   

3.
4.
《Physics Reports》1999,314(6):575-667
Gamma-ray bursts (GRBs) have puzzled astronomers since their accidental discovery in the late 1960s. The BATSE detector on the COMPTON-GRO satellite has been detecting one burst per day for the last six years. Its findings have revolutionized our ideas about the nature of these objects. They have shown that GRBs are at cosmological distances. This idea was accepted with difficulties at first. The recent discovery of an X-ray afterglow by the Italian/Dutch satellite BeppoSAX has led to a detection of high red-shift absorption lines in the optical afterglow of GRB970508 and in several other bursts and to the identification of host galaxies to others. This has confirmed the cosmological origin. Cosmological GRBs release ∼1051–1053 erg in a few seconds making them the most (electromagnetically) luminous objects in the Universe. The simplest, most conventional, and practically inevitable, interpretation of these observations is that GRBs result from the conversion of the kinetic energy of ultra-relativistic particles or possibly the electromagnetic energy of a Poynting flux to radiation in an optically thin region. This generic “fireball” model has also been confirmed by the afterglow observations. The “inner engine” that accelerates the relativistic flow is hidden from direct observations. Consequently, it is difficult to infer its structure directly from current observations. Recent studies show, however, that this “inner engine” is responsible for the complicated temporal structure observed in GRBs. This temporal structure and energy considerations indicates that the “inner engine” is associated with the formation of a compact object – most likely a black hole.  相似文献   

5.
In 4D general relativity, the angular momentum of a black hole is limited by the Kerr bound. We suggest that in string theory, this bound can be breached and compact black-hole-like objects can spin faster. Near such “superspinars”, the efficiency of energy transfer from the accreting matter to radiation can reach 100%, compared to the maximum efficiency of 42% of the extremal Kerr (or 6% of the Schwarzschild) black hole. Finding such superspinning objects as active galactic nuclei, GBHCs, or sources of gamma ray bursts, could be viewed as experimental support for string theory.  相似文献   

6.
We investigate the spin interaction and the gravitational radiation thermally allowed in a head-on collision of two rotating Hayward black holes. The Hayward black hole is a regular black hole in a modified Einstein equation, and hence it can be an appropriate model to describe the extent to which the regularity effect in the near-horizon region affects the interaction and the radiation. If one black hole is assumed to be considerably smaller than the other, the potential of the spin interaction can be analytically obtained and is dependent on the alignment of angular momenta of the black holes. For the collision of massive black holes, the gravitational radiation is numerically obtained as the upper bound by using the laws of thermodynamics. The effect of the Hayward black hole tends to increase the radiation energy, but we can limit the effect by comparing the radiation energy with the gravitational waves GW150914 and GW151226.  相似文献   

7.
A stationary axially symmetric perturbation of a rotating black hole due to a distribution of test matter is investigated. The Newman-Penrose spin coefficient formalism is used to derive a general set of equations describing the perturbed space-time. In a linear approximation we show that the mass and angular momentum of a rotating black hole is not affected by the perturbation. The metric perturbations near the horizon are given. We conclude that given a perturbing test fluid distribution, one can always find a corresponding metric perturbation such that the mass and angular momentum of the black hole are not changed. It was also noticed that when a M, those perturbed spin coefficients and components of the Weyl tensor which determine the intrinsic properties of the incoming null cone near the horizon grow indefinitely.Supported in part by the National Science Foundation under grant No. GP-36687X.On leave from the Institute of Theoretical Physics, University of Warsaw, Warsaw, Poland.  相似文献   

8.
In this article, we study the circular motion of particles and the well-known Penrose mechanism around a Kerr-Newman-Kasuya black hole spacetime. The inner and outer horizons, as well as ergosurfaces of the said black hole, are briefly examined under the effect of spin and dyonic charge. Moreover, by limiting our exploration to the equatorial plane, we discuss the characteristics of circular geodesics and investigate both photons, as well as marginally stable circular orbits. It is noted that black hole charge diminishing the radii of photon and marginally stable circular orbits. To investigate the nature of particle dynamics, we studied the effective potential and Lyapunov exponent. While inspecting the process of energy extraction, we derived the Wald inequality, which can help us to locate the energy limits of the Penrose process. Furthermore, we have found expressions for the negative energy states and the efficiency of energy extraction. The obtained result illustrates that both black hole rotation and dyonic charge contributes to the efficiency of energy extraction.  相似文献   

9.
B R Iyer  Arvind Kumar 《Pramana》1979,12(2):103-120
Unruh’s technique of replacing collapse by boundary conditions on the past horizon (theξ-quantisation scheme) for the derivation of the well-known Hawking radiation is extended to the Kerr black hole for the scalar and especially for the spin half field. The expectation value of the energy momentum tensor is evaluated asymptotically in theξ-vacuum state yielding explicitly the net Hawking flux of scalar and spin half quanta. The appropriate statistical distribution that emerges naturally for Dirac quanta validates the ξ-scheme for fermions and confirms the association of temperature with a Kerr black hole.  相似文献   

10.
Spin measurement of the 6.5 billion solar mass black hole in M87 from the Event Horizon Telescope image is the latest in a series that span a wide range in values, but that tend to share the feature of corotation between the accretion flow and black hole. The spin paradigm for black holes predicts very high black hole spin which in that framework is produced in its last significant merger. High black hole spin appears to be ruled out in the gap paradigm, however, which predicts early formation with a mass already in excess of 4 billion solar masses. In this picture, the black hole experiences slow evolution as it departs from its original radio quasar phase and over billions of years not only fails to double its mass but also falls short of regaining its original high spin, such that it is now compatible with a corotating accreting black hole whose dimensionless spin fits best in the range 0.2 < a < 0.5.  相似文献   

11.
12.
Shortly after the discovery of the Kerr metric in 1963, it was realized that a region existed outside of the black hole’s event horizon where no time-like observer could remain stationary. In 1969, Roger Penrose showed that particles within this ergosphere region could possess negative energy, as measured by an observer at infinity. When captured by the horizon, these negative energy particles essentially extract mass and angular momentum from the black hole. While the decay of a single particle within the ergosphere is not a particularly efficient means of energy extraction, the collision of multiple particles can reach arbitrarily high center-of-mass energy in the limit of extremal black hole spin. The resulting particles can escape with high efficiency, potentially serving as a probe of high-energy particle physics as well as general relativity. In this paper, we briefly review the history of the field and highlight a specific astrophysical application of the collisional Penrose process: the potential to enhance annihilation of dark matter particles in the vicinity of a supermassive black hole.  相似文献   

13.
We study the spin precession frequency of a test gyroscope attached to a stationary observer in the five-dimensional rotating Kaluza-Klein black hole(RKKBH). We derive the conditions under which the test gyroscope moves along a timelike trajectory in this geometry, and the regions where the spin precession frequency diverges. The magnitude of the gyroscope precession frequency around the KK black hole diverges at two spatial locations outside the event horizon. However, in the static case, the behavior of the Lense-Thirring frequency of a gyroscope around the KK black hole is similar to the ordinary Schwarzschild black hole. Since a rotating Kaluza-Klein black hole is a generalization of the Kerr-Newman black hole, we present two mass-independent schemes to distinguish these two spacetimes.  相似文献   

14.
In curved space-time, the Hamilton–Jacobi equation is a semi-classical particle equation of motion, which plays an important role in the research of black hole physics. In this paper, starting from the Dirac equation of spin 1/2 fermions and the Rarita–Schwinger equation of spin 3/2 fermions, respectively, we derive a Hamilton–Jacobi equation for the non-stationary spherically symmetric gravitational field background. Furthermore, the quantum tunneling of a charged spherically symmetric Kinnersly black hole is investigated by using the Hamilton–Jacobi equation. The result shows that the Hamilton–Jacobi equation is helpful to understand the thermodynamic properties and the radiation characteristics of a black hole.  相似文献   

15.
潘彩娟  马游  朱云锋 《计算物理》2011,28(6):942-948
假设旋转的黑洞在标准吸积盘内,在吸积盘的内边界等于最后稳定轨道的情况下,画出黑洞阴影在吸积盘的图像.通过定性和定量分析黑洞的形状和位置,发现对于相同质量的黑洞,黑洞阴影的大小及形状与黑洞的自旋参量有关.旋转黑洞阴影的形状和位置与它的旋转轴是不对称的,通过研究旋转轴与黑洞阴影的位置关系来确定黑洞的质量中心的位置及黑洞的旋转参量.  相似文献   

16.
In this paper, we have studied the accretion of phantom energy on a (2 + 1)-dimensional stationary Banados–Teitelboim–Zanelli (BTZ) black hole. It has already been shown by Babichev et al. that for the accretion of phantom energy onto a Schwarzschild black hole, the mass of black hole would decrease and the rate of change of mass would be dependent on the mass of the black hole. However, in the case of (2 + 1)-dimensional BTZ black hole, the mass evolution due to phantom accretion is independent of the mass of the black hole and is dependent only on the pressure and density of the phantom energy. We also study the generalized second law of thermodynamics at the event horizon and construct a condition that puts an lower bound on the pressure of the phantom energy.  相似文献   

17.
刘彤  薛力 《中国物理 B》2012,21(6):69801-069801
We present a model of jet precession driven by a neutrino-cooled disk around a spinning black hole to explain the quasi-periodic features observed in some gamma-ray burst light curves.The different orientations of the rotational axes between the outer part of a neutrino-cooled disk and a black hole result in precessions of the central black hole and the inner part of the disk.Hence,the jet arising from the neutrino annihilation above the inner disk is driven to precession.We find that the period of precession is positively correlated with the mass as well as the spin of a black hole.  相似文献   

18.
《Comptes Rendus Physique》2016,17(6):617-631
Gamma-Ray Bursts (GRBs) are extra-galactic and extremely energetic transient emissions of gamma rays, which are thought to be associated with the death of massive stars or the merger of compact objects in binary systems. Their huge luminosities involve the presence of a newborn stellar-mass black hole emitting a relativistic collimated outflow, which accelerates particles and produces non-thermal emissions from the radio domain to the highest energies. In this article, I review recent progresses in the understanding of GRB jet physics above 100 MeV, based on Fermi observations of bright GRBs. I discuss the physical implications of these observations and their impact on GRB modeling, and I present some prospects for GRB observation at very high energies in the near future.  相似文献   

19.
We have studied here black hole entropy in the framework of quantum geometry. It is pointed out that the black hole radiation consistent with Hawking spectrum can be realized as an effect of quantum geometry using a dynamical formalism for diffeomorphism invariance which envisages a discretized unit of time in the Planck scale. This formalism suggests that torsion acts within a quantized area unit (area bit) associated with a loop and this eventually forbids the Hamiltonian constraint to be satisfied for a finite loop size. We assign a spin with torsion in each area bit and entanglement entropy of a black hole is computed in terms of the entanglement entropy of this spin system. We have derived the Bekenstein-Hawking entropy along with a logarithmic correction term with a specific coefficient. Also we have shown that the Bekenstein-Hawking entropy can be formulated in terms of the Noether charge associated with a diffeomorphism invariant Lagrangian.  相似文献   

20.
The entropy density, energy density, pressure, and equation of state of an ideal relativistic gas around the Schwarzschild-anti-de Sitter black hole with a global monopole are investigated by using the brick-wall method. It is shown that the sub-leading term with spin-dependence exists and that the corrected expression for any spin field is very different from that for scalar field. The usual result that these thermodynamical quantities take the same forms as those in fiat spacetime holds only for the leading term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号