首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 149 毫秒
1.
星载成像光谱仪用于获得高准确度的光谱遥感数据,而杂散光是影响其光谱测量准确度的重要因素之一.介绍了此类成像光谱仪杂散光的定义、来源和危害,在比较截止滤光片法、光谱法、谱杂散光系数法等光谱仪器常用杂散光测量方法优缺点的基础上,论述了使用杂散光影响因子描述光谱仪杂散光的可行性和优越性.最后,介绍了使用窄带滤光片测量星载成像光谱仪杂散光影响因子的测量系统组成、测量步骤和测量结果,并分析了测量方法的不确定度.结果表明:杂散光影响因子能有效描述光谱仪的杂散光特性,测量结果与光源、探测器等测量条件无关;窄带滤光片法测量不确定度为0.646%(置信概率约为95%),能满足星载成像光谱仪杂散光测量的工程需要.  相似文献   

2.
星载成像光谱仪杂散光测量   总被引:4,自引:3,他引:1  
星载成像光谱仪用于获得高准确度的光谱遥感数据,而杂散光是影响其光谱测量准确度的重要因素之一.介绍了此类成像光谱仪杂散光的定义、来源和危害,在比较截止滤光片法、光谱法、谱杂散光系数法等光谱仪器常用杂散光测量方法优缺点的基础上,论述了使用杂散光影响因子描述光谱仪杂散光的可行性和优越性.最后,介绍了使用窄带滤光片测量星载成像光谱仪杂散光影响因子的测量系统组成、测量步骤和测量结果,并分析了测量方法的不确定度.结果表明:杂散光影响因子能有效描述光谱仪的杂散光特性,测量结果与光源、探测器等测量条件无关;窄带滤光片法测量不确定度为0.646%(置信概率约为95%),能满足星载成像光谱仪杂散光测量的工程需要.  相似文献   

3.
星载超光谱成像仪杂散光及其测量   总被引:1,自引:0,他引:1  
超光谱成像仪比一般光谱仪器具有更多的光谱通道和更高的光谱分辨率,而杂散光是影响超光谱成像仪光谱测节精度的重要因素之一,当前光谱仪器的杂散光测量方法尚不能满足超光谱成像仪杂散光检测的需要.作者探讨了此类成像光谱仪杂散光的定义、来源和危害,论述了使用杂散光影响因子di,j描述光谱仪杂散光的可行性和优越性,并给出了杂散光受扰系数fi(λ)和杂散光干扰系数Fi(λ)的定义、物理意义和工程应用价值.最后,介绍了使用窄带滤光片测量星载超光谱成像仪杂散光的测量系统组成、测量步骤和测量结果.结果表明:杂散光影响因子di,j能正确表示光谱仪的杂散光特性,与光源、滤光片、探测器等测量条件无关,而测量效率比谱杂散光系数法至少提高1倍,满足星载超光谱成像仪杂散光测量的工程需要.  相似文献   

4.
光谱仪器是对物质结构和成分进行分析处理的基本设备。介绍了一种小型对称式Cz-erny-Turner型光纤光谱仪的结构设计方案,该方案结构紧凑、无活动机构、装调简单、使用方便。给出了光谱仪的光学性能测试结果,工作光谱范围、光谱分辨率、波长位置等指标均满足设计要求。整机地面试验和环境试验测试结果表明,该光纤光谱仪性能稳定可靠,很好地满足了设计要求。  相似文献   

5.
建立了基于边界限制的宽波段高效率多通道光谱仪快速设计的分析模型,讨论了多通道光谱仪的性能要求、初始结构参数、项目成本、风险之间的相互关系。该模型能够根据给定的系统指标快速计算出多通道光谱仪各子系统的结构参数,能在项目初期对方案的可行性和项目预算给出合理的评估。以4 m级望远镜为平台,设计了基于体位全息光栅的多通道光谱仪,光谱范围为350~1000 nm,每个通道在闪耀波长处的分辨率为5000,光谱仪本体峰值效率大于53%,全工作波段单色像质能量集中度在80%处优于15μm,满足系统的性能要求。  相似文献   

6.
星载成像光谱仪杂散光检测技术   总被引:1,自引:0,他引:1  
介绍了星载成像光谱仪杂散光检测技术在国内外的发展状况,阐述了成像光谱仪杂散光的定义、来源和危害,分析了杂散光检测的必要性。通过截止滤光片法、光谱法、谱杂散光系数法、级数透过率法、氧气吸收光谱及参数拟合法、卷积计算法和矩阵修正法等7种光谱仪器杂散光检测方法优缺点的对比,给出了星载成像光谱仪杂散光检测技术的具体要求和发展趋势,认为单一的检测技术很难满足工程研制的实际需要,针对各研制阶段的组合检测技术将是星载成像光谱仪杂光检测的发展方向。  相似文献   

7.
星载高分辨率超光谱成像仪分光方式的选择   总被引:3,自引:0,他引:3  
从多个方面分析了棱镜和光栅色散分光的优缺点,分析结果表明棱镜更适于星载高分辨率超光谱成像仪的分光。在透过率方面,棱镜光谱仪透过率高达95.24%(VNIR),而光栅的衍射效率仅为60%~70%。在杂散光方面,棱镜光谱仪的杂散光可达10-4,而光栅的杂散光为10-2。在0.4 -2.5 范围,棱镜光谱仪相对光栅光谱仪有优越性。在色散线性方面,光栅光谱仪基本线性,棱镜光谱仪的短波非线性问题可通过复合棱镜进行补偿。可靠性方面,棱镜光谱仪较光栅光谱仪有优势;在光谱带宽和成本方面,棱镜光谱仪与光栅光谱仪基本接近。  相似文献   

8.
陈芳徐  彭梅 《光学学报》2014,(4):228-232
随着宽谱段高分辨率光谱仪在海洋空间遥感领域的广泛应用,其前置消偏器的设计要求越来越高。为满足成像光谱仪的要求,利用矩阵光学的原理,对应用最为广泛的Lyot消偏器,从残余偏振度的公式出发,对其与晶体楔角和厚度的关系进行数值分析,结合残余偏振度和光学系统分辨率的要求提出了用于宽谱段光谱仪消偏器参数的设计方法。运用该设计方法对400~950nm宽谱段成像光栅光谱仪消偏器进行设计,在全波段范围内,光谱分辨率为4nm时,对任意偏振态的线偏光,消偏器的出射光的残余偏振度均小于2%。  相似文献   

9.
面阵CMOS光纤光谱仪研制   总被引:1,自引:0,他引:1  
研制了一种以非对称交叉Czerny-Turner光路为结构的互补金属氧化物半导体小型光纤光谱仪样机,探讨了以面阵互补金属氧化物半导体图像传感器作为光电探测器的光度测量准确性和线性问题,分析了杂散光对吸光度测量的影响.结论是:通过光强定标和非线性修正后,互补金属氧化物半导体小型光纤光谱仪可以满足一般的应用要求,其光谱测量范围为380~800 nm,光谱带宽约6 nm,积分时间1~500 ms,波长准确度±1 nm,光度准确度±0.03 AU.该光谱仪具有小型化、低成本、速度快等优点.  相似文献   

10.
LAMOST光纤单元定位参数研究   总被引:1,自引:1,他引:0  
大天区多目标光纤光谱天文望远镜LAMOST是世界上光谱获取量最大的望远镜,4000个双回转光纤单元的精确定位是关键因素之一。根据对星像观测的要求以及单元的定位方式,确立了所需的7个定位参数,研究了在复杂现场环境下获取定位参数的具体流程和可行性算法,包括光重心法、摄像机快速标定算法、基于最小二乘拟合圆算法、空间坐标旋转算法等。通过模拟星像观测仿真测试和现场星像试观测证明,定位参数精度能很好地满足观测需求。目前LAMOST望远镜观测光谱获取率已达到90%以上。  相似文献   

11.
新型大视场消杂光眼底相机光学系统的设计   总被引:3,自引:0,他引:3  
设计了一款大视场、免散瞳便携式眼底相机。综合考虑接目物镜被成像和照明系统共用、人眼的像差和视度差异等因素,采用16重结构进行优化设计。设计结果的视场角达60°,分辨率为200万像素,对-8 D~+10 D(1 D=1 m-1)的人眼普遍适用,在120 lp/mm处各视场的调制传递函数(MTF)均大于0.2,畸变小于5%。为消除角膜反射产生的严重杂散光,提出采用LED环形光源改进传统科勒式照明光路,不仅保证眼底照明均匀,而且大大提高了系统的光能利用率,降低了光学系统的复杂程度。为了解决传统系统中接目物镜杂散光无法消除的难题,提出采用偏振分光棱镜代替系统中的分光镜,同时在接目物镜前端加入λ/4波片,消除了99.5%以上的由接目物镜反射产生的杂光。  相似文献   

12.
中阶梯光栅具有刻线密度低、闪耀角度大、衍射级次高、光谱范围宽、色散率大、光谱分辨率高等一系列突出优点,近年来由于其优良的性能而倍受青睐。作为评价中阶梯光栅质量的衍射效率和杂散光系数直接体现了中阶梯光栅的光学性能,能够准确地进行中阶梯光栅衍射效率和杂散光系数的测量是光栅应用的前提。鉴于此,基于中阶梯光栅的衍射理论创造性地提出用一套系统对中阶梯光栅的衍射效率和杂散光系数进行检测,该系统引入双轨结构,具有结构简单新颖、一机多能等优点。通过理论分析和计算,确定了检测系统的结构参数,设计结果表明: 该检测系统可用于测量190~1 100 nm光谱范围内的中阶梯光栅绝对衍射效率,同时也可用于测量200~800 nm光谱范围内的中阶梯光栅杂散光系数,实现了将衍射效率测量和杂散光测量集于一体的设计思想。  相似文献   

13.
为解决低照度微弱信号探测的微光光学系统杂散光问题,研究了杂散光的原理和特性。利用光学系统建模软件LightTools对微光光学系统进行仿真建模,并开展杂散光分析。为减少杂散光,在物镜筒的筒壁加工消光螺纹,并针对不同形式的消光螺纹,开展了能量仿真模拟。仿真结果表明,采用螺距0.35 mm的消光螺纹,能够将杂散光系数从7%降低到4%。仿真分析结果与实验结果一致,为其他微弱信号探测光学系统在设计阶段对杂散光进行消除提供了指导。  相似文献   

14.
针对不同光学系统中存在的杂散光所造成的假信号或信号饱和影响,本文结合像面照度分析和消光环抑制的方法,对准直系统进行分析,找到产生杂散光的主要原因,设计了3种不同结构的消光环以消除杂散光。仿真实验结果确定了最优形式的消光环结构,边缘杂散光抑制最大下限值为0.38%,平均抑制值5.68×10~(-4)%;以此模型为基础,进行了杂散光抑制实验。实验结果表明,带有消光环结构的准直系统可以有效抑制杂散光,保证了后续光学系统的功能实现,对其他杂散光抑制系统具有借鉴作用。  相似文献   

15.
应对气候变化预测与灾害天气防范等科学难题,空间观测领域提出高精度的光谱辐射度定标需求。阵列式光谱辐射计存在内部结构缺陷和光学元器件不理想等问题,导致杂散辐射,严重影响光谱辐射度测量结果的准确性。测量多种典型阵列式光谱辐射计的杂散辐射特性,考虑外场目标光源与实验室定标光源不一致对杂散辐射修正的影响,分别基于带通滤光片和可调谐激光器研究紫外杂散辐射修正方法。首先,利用不同光谱透过率的带通滤光片,测量可见及红外光谱辐射引起的紫外杂散信号。针对杂散辐射分布特点,建立数学修正模型,实现高效快捷的杂散辐射修正。地基验证场的光谱辐射亮度测量结果修正后,紫外杂散辐射信号显著降低。对于连续分布的宽谱段光源,带通滤光片修正法具有实验简便易行、测试过程高效等优点。然而,实现非连续分布或窄带光源的高精度杂散辐射修正存在困难。为此,建立基于可调谐激光器的杂散辐射测量系统,解决了各个像素点杂散辐射线扩展函数的测量难题。改变可调谐激光器的输出波长,精细化测量各个像素点的杂散辐射线扩展函数,再推导出杂散辐射信号分布函数,通过MATLAB软件将矩阵反演运算,得到各像素点的杂散辐射修正结果,实现杂散辐射的高精度修正。利用不同类型的阵列式光谱辐射计验证了该修正方法,对于非连续分布的窄带光源,测量结果修正后杂散辐射信号降低了一个数量级,并且谱线两边的杂散宽峰显著消除,大幅降低了紫外波段的测量偏差。针对不同光谱分布的光源,建立了两种优势互补的杂散辐射修正方法,有效改善了阵列式光谱辐射计的紫外测量结果偏差,进一步确保我国地球观测数据的准确性和国际等效互认。  相似文献   

16.
人眼角膜前表面反射的杂散光是视网膜有效反射率的10~100倍,对人眼波前像差探测和视网膜高分辨率成像影响很大。为了有效消除角膜前表面反射杂散光,本文介绍并对比了偏振分束法、共焦滤波法、细光束离轴照明法和环形照明法等消除角膜前表面反射杂散光的方法。分析表明,这些方法虽然都可以在一定程度上消除杂散光,但均不够理想,而环形照明法和共焦滤波法相结合具有光能利用率高、消杂光效果好、简单易行等优点,是消除人眼角膜前表面杂散光的有效方法。  相似文献   

17.
本文针对温室设计了一种分光型覆盖结构,该结构可以使太阳光中的可见光进入温室提供植物光合作用所需光能,近红外光反射到薄膜电池转化成电能.本文利用光学软件模拟不同入射角下该结构的光学特性,室外试验结果表明,该结构全天可见光透过率在36%~48.9%之间,室内照度为20~30 klx,基本满足植物生长需求;输出电功率呈现早晚...  相似文献   

18.
The origin of the stray light appearing in the low wavenumber Raman spectra was studied on a double monochromator with a charge coupled device (CCD) detector by theoretical calculations and experimental observations. It is verified that the effect of the secondary maxima of the diffraction grating on the spectrum cannot be ignored, and the secondary maxima of Rayleigh scattering lead to the stray light in low wavenumber Raman spectra. The dependence of operating parameters for a double monochromator with a CCD detector working in the additive mode on the spectral feature has been calculated and experimentally observed. This may give a quantitative suggestion for proper choice of operating parameters that can efficiently suppress stray light in low wavenumber Raman spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号