首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On acetone-sensitized irradiation in the presence of 2,3-dimethylbut-2-ene, α-cyano-α,β-unsaturated δ-lactone 5 is converted both to cyclopentapyrans resulting from stepwise addition of the alkene to the olefinic C(β)- and the nitrile C-atom of triplet excited 5 , and cyclobutapyranes, i.e., [2+2] cycloadducts. Similarly, direct irradiation of 1-benzopyran-3-carbonitrile 6 in the presence of the same alkene affords cyclobutabenzopyran 13 and cyclopentabenzopyran 14 , the latter resulting from an upper excited triplet state of 6 .  相似文献   

2.
An efficient and single-step iodine catalyzed and metal-free synthesis of di and tri-substituted 2-methylfuran derivatives were achieved from 1-popargyl-1,2-diols. Stereospecific synthesis of starting 1,2-diols was achieved by indium mediated Barbier type propargylation on corresponding keto-alcohols or by sodium borohydride mediated reduction of 2-hydroxy-2-propargyl ketones. The furan synthesis proceeded through iodine mediated 5-exo-trig cyclization, dehydration and reductive deiodination. The method was applied to the synthesis of 2-methylfuran fused to phenanthrene, pyrene and acenaphthylene rings.  相似文献   

3.
A molecular triad has been synthesized comprising two free-base porphyrin terminals linked to a central ruthenium(II) bis(2,2':6',2'-terpyridine) subunit via meso-phenylene groups. Illumination into the ruthenium(II) complex is accompanied by rapid intramolecular energy transfer from the metal-to-ligand, charge-transfer (MLCT) triplet to the lowest-energy pi-pi* triplet state localized on one of the porphyrin subunits. Transfer takes place from a vibrationally excited level which lowers the activation energy. The electronic coupling matrix element for this process is 73 cm(-1). Selective illumination into the lowest-energy singlet excited state (S1) localized on the porphyrin leads to fast singlet-triplet energy transfer that populates the MLCT triplet state with high efficiency. This latter process occurs via Dexter-type electron exchange at room temperature, but the activation energy is high and the reaction is prohibited at low temperature. For this latter process, the electronic coupling matrix element is only 8 cm(-1).  相似文献   

4.
Paterno-Buchi coupling, photochemical [2 + 2] cycloaddition, of carbonyl compounds 2a-f with 2-siloxyfurans 1a-d has been investigated in detail. The stereoselective formations of exo-oxetanes 3 and 4 were observed in high yields. The regioselectivity (double-bond selection, 3 vs 4) was found to be largely dependent upon the carbonyls, the substituents at the furan ring, and the excited state of the carbonyls (singlet vs triplet). The photoreaction of aldehydes 2a-c gave bicyclic exo-oxetanes 3 and 4 at regio-random, independent upon their excited states and the substituents at furan ring. However, the photoreaction of the triplet state of ketones 2d-f was found to give regioselectively exo-oxetanes 4, except for the 4-methyl-2-siloxyfurane 1d case. The singlet-excited state of acetone 2f gave both oxetanes 3 and 4 at regio-random. For the singlet-state photochemistry, the approach direction of the electrophilic oxygen of the excited carbonyls to the furan ring is proposed to be an important factor for the exo-stereoselection. The Griesbeck model can rationalize the regio- and exo-selective formation of oxetanes in the triplet-state photoreaction.  相似文献   

5.
E. Poquet  A. Dargelos  M. Chaillet 《Tetrahedron》1976,32(14):1729-1733
The photorearrangement of gaseous furan when photolysed at 254 nm in the presence of mercury was studied using both an ab initio and a semiempirical treatment of excited states.A reaction pathway towards the cyclization into cyclopropenylaldehyde is proposed. It is shown that the rearrangement of photosensitized furan involves a singlet or triplet excited state of the π, σ* type.  相似文献   

6.
We studied the energy transfer processes in the molecular array consisting of pyrene (Py), biphenyl (Ph2), and bisphthalimidethiophene (ImT), (Py-Ph2)2-ImT, during two-color two-laser flash photolysis (2-LFP). The first laser irradiation predominantly generates ImT in the lowest triplet excited state (ImT(T1)) because of the efficient singlet energy transfer from Py in the lowest singlet excited state to ImT and, then, intersystem crossing of ImT. ImT(T1) was excited to the higher triplet excited state (Tn) with the second laser irradiation. Then, the triplet energy was rapidly transferred to Py via a two-step triplet energy transfer (TET) process through Ph2. The efficient generation of Py(T1) was suggested from the nanosecond-picosecond 2-LFP. The back-TET from Py(T1) to ImT was observed for several tens of microseconds after the second laser irradiation. The estimated intramolecular TET rate from Py(T1) to ImT was as slow as 3.1 x 104 s-1. Hence, long-lived Py(T1) was selectively and efficiently produced during the 2-LFP.  相似文献   

7.
Irradiation into the dye-based absorption band of complexes ((t)Bu(2)bipy)Pt(SR)(2) and ((t)Bu(2)bipy)Pt(OR)(2) where R denotes a coumarine-based thiolate and alkoxolate substituent populates the same excited triplet state as is obtained by excitation into the much weaker (RX)(2)Pt→(t)Bu(2)bipy (X = O, S) charge-transfer band. This paves the way toward more efficient photosensitizers.  相似文献   

8.
The excited‐state dynamics of pentacene derivatives with stable radical substituents were evaluated in detail through transient absorption measurements. The derivatives showed ultrafast formation of triplet excited state(s) in the pentacene moiety from a photoexcited singlet state through the contributions of enhanced intersystem crossing and singlet fission. Detailed kinetic analyses for the transient absorption data were conducted to quantify the excited‐state characteristics of the derivatives.  相似文献   

9.
Sixteen new derivatives of the furan and of the 1,1-difurylmethane series were synthesized by the reactions of furan, 2-methylfuran, 2-(3′-acetoxypropyl)furan, 2-(3′-butyl)furan, 1-cyclopropyl-2-αfurylcyclopropane, and 1,1-difurylethane with saturated and α, β-unsaturated aliphatic carbonyl compounds in acid medium.  相似文献   

10.
Phenalenone (PN) is a very efficient singlet oxygen sensitiser in a wide range of solvents. This work uses ab initio quantum chemical calculations (CASSCF/CASPT2 protocol) to study the mechanism for populating the triplet state of PN responsible for this reaction, the (3)(π-π*) state. To describe in detail this reaction path, the singlet and triplet low-lying excited states of PN have been studied, the critical points of the potential energy surfaces corresponding to these states located and the vertical and adiabatic energies calculated. Our results show that, after the initial population of the S(2) excited state of (π-π*) character, the system undergoes an internal conversion to the (1)(n-π*) state. After populating the dark S(1) state, the system relaxes to the (1)(n-π*) minimum, but rapidly populates the triplet manifold through a very efficient intersystem crossing to the (3)(π-π*) state. Although the population of the minimum of this triplet state is strongly favoured, a conical intersection with the (3)(n-π*) surface opens an internal conversion channel to this state, a path accessible only at high temperatures. Radiationless deactivation processes are ruled out on the basis of the high-energy barriers found for the crossings between the excited states and the ground state. Our computational results satisfactorily explain the experimental findings and are in very good agreement with the experimental data available. In the case of the frequency of fluorescence, this is the first time that these data have been theoretically predicted in good agreement with the experimental results.  相似文献   

11.
Irradiation of uranyl ion with light of wavelength =345 nm to singlet state, through vibrational relaxation populates the lowest excited triplet state from where it emits luminescence emission at 486, 506, 535 nm. Elongation and weakening of uranium-oxygen multiple bonds is evident from the lower stretching frequency (701.15 cm–1) in the excited state relative to the ground state (942.5 cm–1). Series of aromatic molecules including benzene derivatives, aromatic hydrocarbons and heterocyclic molecules very efficiently quench uranyl ion luminescence through nonradiative donor-acceptor complex formation. Increasing inductive effect, resonance phenomena and extension of aromatic -electron cloud determine the order of Stern-Volmer constant to measure their quenching action.  相似文献   

12.
Diaryl acetylenes, in which one of the aryl groups is either a pyridine or a pyrazine, undergo efficient triplet state photocycloaddition to 1,4-cyclohexadiene with formation of 1,5-diaryl substituted tetracyclo[3.3.0.0(2,8).0(4,6)]octanes (homoquadricyclanes). In the case of pyrazinyl acetylenes, the primary homoquadricyclane products undergo a secondary photochemical rearangement leading to diaryl substituted tricyclo[3.2.1.0(4,6)]oct-2-enes. Mechanistic and photophysical studies suggest that photocycloaddition proceeds through an electrophilic triplet excited state whereas the subsequent rearrangement to the tricyclooctenes proceeds through a singlet excited state. Chemical and quantum yields for the cycloaddition, in general, correlate with the electron acceptor character of aryl substituents but are attenuated by photophysical factors, such as the competition between the conversion of acetylene singlet excited state into the reactive triplet excited states (intersystem crossing: ISC) and/or to the radical-anion (photoelectron transfer from the diene to the excited acetylene: PET). Dramatically enhanced ISC between pi-pi S(1) state and "phantom" n,pi triplet excited state is likely to be important in directing reactivity to the triplet pathway. The role of PET can be minimized by the judicious choice of reaction conditions (solvent, concentration, etc.). From a practical perspective, such reactions are interesting because "capping" of the triple bond with the polycyclic framework orients the terminal aryl (4-pyridyl, 4-tetrafluoropyridyl, phenyl, etc.) groups in an almost perfect 60 degrees angle and renders such molecules promising supramolecular building blocks, especially in the design of metal coordination polymers.  相似文献   

13.
对近期有机分子三重激发态调控的研究进展进行了总结评述。控制分子的三重激发态性质,可以制备多种具有新颖性质的分子,如用于可激活光动力治疗(PDT)的光敏剂、磷光分子探针与生物标识试剂,以及可控的三重态湮灭上转换等。但目前对三重态控制方面的研究相对较少,其中的规律也很不明确。近期有文献陆续报道了使用超分子方法和共价修饰法进行的三重态调控,利用的光物理过程有单重态能量转移、三重态能量转移、电子转移等等。现有研究结果表明,三重态的调控规律与单重态的调控规律有所不同,例如:发色团的单重激发态(荧光)往往可以被光诱导电子转移(PET)所猝灭,但是在多个例子中已发现,相同发色团的三重态并不能被PET所猝灭。本文总结的研究结果及所作的分析,将对该领域的分子结构设计及后续研究起到一定的促进作用。  相似文献   

14.
In 2014, two unnatural nucleosides, d5SICS and dNaM, were shown to selectively base pair and replicate with high fidelity in a modified strain of E. coli, thus effectively expanding its genetic alphabet from four to six letters. More recently, a significant reduction in cell proliferation was reported in cells cultured with d5SICS, and putatively with dNaM, upon exposure to brief periods of near‐visible radiation. The photosensitizing properties of the lowest‐energy excited triplet state of both d5SICS and dNaM were implicated in their cytotoxicity. Importantly, however, the excited‐state mechanisms by which near‐visible excitation populates the triplet states of d5SICS and dNaM are currently unknown. In this study, steady‐state and time‐resolved spectroscopies are combined with quantum‐chemical calculations in order to reveal the excited‐state relaxation mechanisms leading to efficient population of the triplet states in these unnatural nucleosides in solution. It is shown that excitation of d5SICS or dNaM with near‐visible light leads overwhelmingly to ultrafast population of their triplet states on the femtosecond time scale. The results presented in this work lend strong support to the proposal that photoexcitation of these unnatural nucleosides can accelerate oxidatively generated damage to DNA and other biomolecules within the cellular environment.  相似文献   

15.
Singlet and triplet low-lying states of the 4-dimethylaminobenzonitrile and its derivatives have been studied by the density functional theory and ab initio methodologies. Calculations reveal that the existence of the methyl groups in the phenyl ring and the amino twisting significantly modify properties of their excited states. A twisted singlet intramolecular charge-transfer state can be accessed through decay of the second planar singlet excited state with charge-transfer character along the amino twisting coordinate or by an intramolecular charge-transfer reaction involved with a locally first excited singlet state. Plausible charge-transfer triplet states and intersystem crossing processes among singlet and triplet states have been explored by spin-orbit coupling calculations. The intersystem crossing process was predicted to be the dominant deactivation channel of the photoexcited 4-dimethylaminobenzonitrile.  相似文献   

16.
Adiabatic excitation energies, excited state geometries, excited state charges, bond orders and dipole moments have been obtained for HCN, CO2,H2CO, HFCO, F2CO, ethylene, trans-butadiene, furan, pyrrole and uracil using the SINDO1 semi-empirical method with configuration interaction. Our results generally agree with those ofab initio calculations and experiment satisfactorily. Geometry optimization is found to mix configurations differing in their allowedness in vertical excitation from the ground state, which in turn helps in the assignment of spectral transitions. TheV excited singlet state of trans-butadiene and various excited states of furan, pyrrole and uracil have been found to be appreciably non-planar. The single and double CC bonds are found to exchange positions due to the lowest triplet and singlet transitions of furan and pyrrole. The first triplet and first singlet transitions of uracil have been found to be of π-π* and π-σ* types respectively in agreement with recent experimental findings. On leave of absence from the Department of Physics, Banaras Hindu University, Varanasi-221005, India  相似文献   

17.
The mechanisms of photoisomerization reactions were investigated theoretically using a model system of 2-methylfuran with the CASSCF (10-electron/8-orbital active space) and MP2-CAS methods and the 6-311(d,p) basis set. After 2-methylfuran molecules are produced in the T(1) state by photoexcitation at 254 nm, intersystem crossing to the S(0) surface is the most probable pathway for deactivation. Relaxing to the S(0) state, the 2-methylfuran molecules can dissociate into 3-methylcyclopropene and carbon monoxide products. Otherwise, they may revert to singlet 2-methylfuran or undergo photorearrangement to produce 3-methylfuran. These stepwise mechanisms are consistent with the available experimental observations.  相似文献   

18.
Under short-wavelength UV irradiation, lipoic acid (LipSS) and its reduced form, dihydrolipoic acid (DHLA), undergo photoionization processes through a bi- or monophotonic pathway. After ionization, the LipSS radical cation (LipSS*+) and radical anion (LipSS*-) are generated. LipSS*- can be converted to equimolar amounts of LipSS and DHLA through second-order decay. Triplet acetone can be quenched by LipSS and DHLA with a rate close to the diffusion-controlled limit. The mechanism was further confirmed by continuous irradiation experiments. When LipSS is directly irradiated with UVA light, the first excited triplet state of LipSS is observed, with a lifetime tau=75 ns. Characteristic reactions include triplet energy transfer to oxygen and beta-carotene and addition to isoprene. The lifetime of triplet LipSS is also shortened by addition of water and methanol.  相似文献   

19.
Cis-1,2-Dihydrophthalic thioanhydride (2) and some substituted derivatives were prepared and found to undergo irradiation induced, high quantum-yields CO+COS extrusion from a siglet and a (high) triplet excited state.  相似文献   

20.
本工作采用激光闪光光解法对香豆素酮类化合物敏化碘鎓盐化合物问题进行了研究。结果表明:碘鎓盐化合物能通过电子转移机理猝灭香豆素酮的激发三重态。工作中还用甲基紫精(PQ2+)为模型化物,观察到它也能使香豆素酮的三重态猝灭,同时可看到在位于610nm处的PQ+生成。这些结果说明,在发生电子转移的反应中香豆素酮是电子给体,按Weller公式的计算结果也表明它们之间可发生电子转移反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号