首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract Using normal human fibroblasts we have determined the ability of far (254 nm), mid (310 nm) or near (365 nm) UV radiation to: (i) induce pyrimidine dimers (detected as UV endonuclease sensitive sites) and DNA single-strand breaks (detected in alkali); (ii) elicit excision repair, monitored as unscheduled DNA synthesis (UDS); and (iii) reduce colony-forming ability. Unscheduled DNA synthesis studies were also performed on dimer excision-defective xeroderma pigmentosum (XP) cells, and the survival studies were extended to include XP and Bloom's syndrome (BS) strains. UV-induced cell killing in normal, BS and XP cells was found to relate to an equivalent dimer load per genome after 254 or 310 nm exposure, whereas at 365 nm the lethal effects of non-dimer damage appeared to predominate. Lethality could not be correlated with DNA strand breakage at any wavelength. The two XP strains examined showed the same relative UDS repair deficiency at the two shorter wavelengths in keeping with a predominant role for pyrimidine dimer repair in the expression of UDS. However, UDS was not detected in 365 nm UV-irradiated normal and XP cells despite dimer induction; this effect was due to the inhibition of DNA repair functions since 365 nm UV-irradiated normal cells showed reduced capacity to perform UDS subsequent to challenge with 254 nm UV radiation.
In short, the near UV component of sunlight apparently induces biologically important non-dimer damage in human cells and inhibits DNA repair processes, two actions which should be considered when assessing the deleterious actions of solar UV.  相似文献   

2.
Abstract The rate of excision of sunlight-induced pyrimidine dimers in DNA of exposed human cells was determined. Two normal excision repair-proficient human diploid fibroblast strains (WS-1 and KD) and a repair-deficient strain (XP12BE, group A) maintained in a nondividing state were exposed to summer noon-time sunlight for times (5 and 20 min) that induced numbers of dimers equivalent to far UV (254 nm) exposures of 1 and 4 J/m2. Pyrimidine dimers were quantified in extracted DNA using a U V-endonuclease-alkaline sedimentation assay. The excision rates of these dimers were similar to those observed for the excision of UV-induced pyrimidine dimers. No sunlight-induced inhibition or stimulation of DNA repair was observed in either strain at these low exposures.  相似文献   

3.
Abstract— Ultraviolet light causes a type of damage to the DNA of human cells that results in a DNA strand break upon subsequent irradiation with wavelengths around 300 nm. This DNA damage disappears from normal human fibroblasts within 5 h, but not from pyrimidine dimer excision repair deficient xeroderma pigmentosum group A cells or from excision proficient xeroderma pigmentosum variant cells. The apparent lack of repair of the ultraviolet light DNA damage described here may contribute to the cancer prone nature of xeroderma pigmentosum variant individuals. These experiments show that the same amount of damage was produced at 0°C and 37°C indicating a photodynamic effect and not an enzymatic reaction. The disappearance of the photosensitive lesions from the DNA is probably enzymatic since none of the damage was removed at 0°C. Both the formation of the lesion and its photolysis by near ultraviolet light were wavelength dependent. An action spectrum for the formation of photosensitive lesions was similar to that for the formation of pyrimidine dimers and(6–4) photoproducts and included wavelengths found in sunlight. The DNA containing the lesions was sensitive to wavelengths from 304 to 340 nm with a maximum at 313 to 317 nm. This wavelength dependence of photolysis is similar to the absorption and photolysis spectra of the pyrimidine(6–4) photoproducts  相似文献   

4.
Sunlight-induced killing of nondividing human cells in culture   总被引:1,自引:0,他引:1  
Nondividing populations of human diploid fibroblasts that are DNA excision repair proficient (WS-1, KD. SSCW) and repair deficient (XP12BE) were exposed to mid-day summer sunlight for a determination of survival based on an ability of cells to remain attached to a culture vessel surface. Whereas mid- and far-UV wavelengths and radiation emitted from a sunlamp cause a gradual degeneraton and detachment of cells in a dose-dependent manner, sunlight does not promote cell killing that is evidenced by these criteria in repair proficient cells. Detachment of repair deficient cells is promoted to a limited extent but only at sunlight exposure times that are low with respect to the amount of DNA damage (pyrimidine dimers) induced. Repair proficient and deficient cells exposed to sunlight for longer times do not detach but are incapable of excuding a viable stain several days after exposure and appear as histologically fixed cells. Pyrimidine dimer levels in these sunlight irradiated cells were great enough to have promoted detachment had these levels been induced by UV (254 nm) alone. Other photodamage induced by these exposures evidently inhibits the dimer-induced cell degeneration that leads to cell detachment. We conclude that pyrimidine dimers are responsible for cell killing at short sunlight exposure times (< 40 min) but that at longer exposures (> 80 min) cells arc killed by a different mechanism that is independent of dimer-caused death.  相似文献   

5.
Abstract— The survival curve obtained after UV irradiation of the unicellular cyanobacterium Synecho-cystis is typical of a DNA repair competent organism. Inhibition of DNA replication, by incubating cells in the dark, increased resistance to the lethal effects of UV at higher fluences. Exposure of irradiated cells to near ultraviolet light(350–500 nm) restored viability to pre-irradiation levels. In order to measure DNA repair activity, techniques have been developed for the chromatographic analysis of pyrimidine dimers in Synechocystis. The specificity of this method was established using a haploid strain of Sacchar-omyces cerevisiae. In accordance with the physiological responses of irradiated cells to photoreactivating light, pyrimidine dimers were not detected after photoreactivation treatment. Incubation of irradiated cells under non-photoreactivating growth conditions for 15 h resulted in complete removal of pyrimidine dimers. It is concluded that Synechocystis contains photoreactivation and excision repair systems for the removal of pyrimidine dimers.  相似文献   

6.
Abstract The relative UV sensitivities of alfalfa seedlings grown outdoors versus plants grown in a growth chamber under UV-filtered cool white fluorescent bulbs have been determined using three criteria: (1) level of endogenous DNA damage as sites for the UV endonuclease from Micrococcus luteus . (2) susceptibility to pyrimidine dimer induction by a UV challenge exposure and (3) ability to repair UV-induced damage. We find that outdoor-grown plants contain approximately equal frequencies of endogenous DNA damages, are less susceptible to dimer induction by a challenge exposure of broad-spectrum UV and photorepair dimers more rapidly than plants grown in an environmental chamber under cool white fluorescent lamps plus a filter that removes most UV radiation. These data suggest that plants grown in a natural environment would be less sensitive to UVB-induced damage than would be predicted on the basis of studies on plants grown under minimum UV.  相似文献   

7.
Abstract Direct determination has been made of cyclobutyl pyrimidine dimer induction and excision repair in an episomal SV40 DNA population in vivo . Maintaining SV40-transformed human (GM637) cells in confluent culture results in amplification of a mutant SV40 episome to high copy number. T4 endonuclease V was used to quantify the induction and repair of cyclobutane dimers in the SV40 episome and genomic DNA of the same cells. Differences in both parameters were observed cyclobutane dimers were induced at 1.5–2-fold greater frequency in episomal DNA and excised at a reduced rate compared to genomic DNA in the host cells.  相似文献   

8.
Abstract— DNA from Escherichia coli was irradiated at 254 nm in the presence of silver in order to preferentially enhance the rate of formation of pyrimidine-dimer damage over nondimer damage. The irradiated DNA was treated with formaldehyde in order to measure the unwinding velocity of the defects associated with the pyrimidine dimers. This velocity was found to be 0.18 base pairs/min per pyrimidine dimer, which is nearly 8 times less than that found for a double-strand break (1.37 base pairs/min) obtained by use of sheared DNA whose size was determined by electron microscopy. The rate of reaction of the DNA with formaldehyde varied linearly with the pyrimidine dimer concentration and showed no inflection due to clustering. Treatment of irradiated DNA with UV endonuclease enhanced the formaldehyde reaction by ? 7-fold, consistent with the conversion of a dimer into the faster-reacting defect associated with a single-strand break. These results indicate that the distribution of dimers in DNA is random and not clustered, and that previous interpretations of clustering were based on the false assumption that dimer and chain break defects unwind with similar velocities when treated with formaldehyde.  相似文献   

9.
UV‐induced formation of pyrimidine dimers in DNA is a major deleterious event in both eukaryotic and prokaryotic cells. Accumulation of cyclobutane pyrimidine dimers and pyrimidine (6‐4) pyrimidone photoproducts can lead to cell death or be at the origin of mutations. In skin, UV induction of DNA damage is a major initiating event in tumorigenesis. To counteract these deleterious effects, all cell types possess DNA repair machinery, such as nucleotide excision repair and, in some cell types, direct reversion. Different analytical approaches were used to assess the efficiency of repair and decipher the enzymatic mechanisms. We presently review the information provided by chromatographic methods, which are complementary to biochemical assays, such as immunological detection and electrophoresis‐based techniques. Chromatographic assays are interesting in their ability to provide quantitative data on a wide range of damage and are also valuable tools for the identification of repair intermediates.  相似文献   

10.
Abstract— DNA single-strand breaks were produced in uvrA and uvrB strains of E. coli K-12 after UV (254 nm) irradiation. These breaks appear to be produced both directly by photochemical events, and by a temperature-dependent process. Cyclobutane-type pyrimidine dimers are probably not the photoproducts that lead to the temperature-dependent breaks, since photoreactivation had no detectable effect on the final yield of breaks. The DNA strand breaks appear to be repairable by a process that requires DNA polymerase I and polynucleotide ligase, but not the recA, recB, recF, lexA 101 or uvrD gene products. We hypothesize that these temperature-dependent breaks occur either as a result of breakdown of a thermolabile photoproduct, or as the initial endonucleolytic event of a uvrA , uvrB -independent excision repair process that acts on a UV photoproduct other than the cyclobutane-type pyrimidine dimer.  相似文献   

11.
Squamous cell carcinomas (SCCs) are associated with ultraviolet radiation and multiple genetic changes, but the mechanisms leading to genetic instability are unclear. SCC cell lines were compared to normal keratinocytes for sensitivity to ultraviolet radiation, DNA repair kinetics and DNA repair protein expression. Relative to normal keratinocytes, four SCC cell lines were all variably sensitive to ultraviolet radiation and, except for the SCC25 cell line, were deficient in global repair of cyclobutane pyrimidine dimers, although not 6‐4 photoproducts. Impaired DNA repair of cyclobutane pyrimidine dimers was associated with reduced mRNA expression from XPC but not DDB2 genes which each encode key DNA damage recognition proteins. However, levels of XPC or DDB2 proteins or both were variably reduced in repair‐deficient SCC cell lines. p53 levels did not correlate with DNA repair activity or with XPC and DDB2 levels, but p63 levels were deficient in cell lines with reduced global repair. Repair‐proficient SCC25 cells depleted of p63 lost XPC expression, early global DNA repair activity and UV resistance. These results demonstrate that some SCC cell lines are deficient in global nucleotide excision repair and support a role for p63 as a regulator of nucleotide excision repair in SCCs.  相似文献   

12.
Abstract— XP4L0, a xeroderma pigmentosum complementation group A strain, exhibits very limited DNA repair activity. It has extreme sensitivity to UV (254 nm) as determined by colony forming ability. The rate of loss of UV (1 J/m2)-induced pyrimidine dimers from populations of quiescent, nondividing XP4LO cells was determined and found to be slower than that observed for other group A strains (XP25R0, XP12BE, XP8LO). The extreme UV-sensitivity is also exhibited by the nondividing cells in a survival assay that employs nondividing cell populations and does not involve cell reproduction. This result suggests that the extreme sensitivity measured previously by colony-forming ability (a cell-reproduction assay) is due to the excision repair defect alone and not to an additional post-replication repair defect. The very limited excision allows for an accurate definition of target size for inactivation of nondividing cells, about 1 pyrimidine dimer per 105 base pairs, and when compared to results observed for other XP-A strains, provides further evidence that even though excision repair in group A is severely limited, it has biological significance.  相似文献   

13.
Abstract— Unscheduled DNA synthesis and excision of pyrimidine dimers in Chinese hamster ovary cells irradiated with UV light were inhibited by prior exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)(1–10 μ M ) Although the pathways for excision of pyrimidine dimers and alkylation damage are known to differ, alkylations from MNNG exposure appear to have a direct effect on the nucleotide excision repair system. These results indicate that the method of exposing cells to two DNA-damaging agents to determine whether they are repaired by common or different pathways can be quite unreliable because of other effects on the repair systems themselves.  相似文献   

14.
SKH-1 hairless mice repair UV-induced pyrimidine dimers in epidermal DNA   总被引:3,自引:0,他引:3  
The SKH-1 hairless mouse strain has been used extensively as a model for human photocarcinogenesis, photoimmunology and photoaging, but little is known about DNA repair in living mouse skin. Mice were irradiated with UV-B light at doses which produce mild to severe sunburn, and the frequency of pyrimidine dimers in epidermal DNA was measured immediately and 6 h after irradiation using T4 endonuclease V treatment and alkaline agarose gel electrophoresis. The results demonstrate significant removal of pyrimidine dimers in mouse skin in vivo, with a dimer half-life of 7.4 h. These findings are similar to the repair of dimers in human skin in vivo. The SKH-1 hairless mouse is thus a useful model for pyrimidine dimer repair in human skin.  相似文献   

15.
An immunoslot blot assay was developed to detect pyrimidine dimers induced in DNA by sublethal doses of UV (254 nm) radiation. Using this assay, one dimer could be detected in 10 megabase DNA using 200 ng or 0.5 megabase DNA using 20 ng irradiated DNA. The level of detection, as measured by dimer specific antibody binding, was proportional to the dose of UV and amount of irradiated DNA used. The repair of pyrimidine dimers was measured in human skin fibroblastic cells in culture following exposure to 0.5 to 5 J m-2 of 254 nm UV radiation. The half-life of repair was approximately 24, 7 and 6 h in cells exposed to 0.5, 2 and 5 J m-2 UV radiation, respectively. This immunological approach utilizing irradiated DNA immobilized to nitrocellulose should allow the direct quantitation of dimers following very low levels of irradiation in small biological samples and isolated gene fragments.  相似文献   

16.
Stratospheric ozone depletion may result in increased solar UV-B radiation to the ocean's upper layers and may cause deleterious effects on marine organisms. The primary UV-B damage induced in biological systems is to DNA. While physical measurements of solar UV-B penetration into the sea have been made, the effective depth and magnitude of actual DNA damage have not been determined. In the experiments reported here, UV-B-induced photoproducts (cyclobutane pyrimidine dimers) have been quantified in DNA molecules exposed to solar UV at the surface and at various depths in clear, tropical marine waters off Lee Stocking Island (23 degrees 45' N, 76 degrees 0.7' W), Exuma Cays, Bahamas. (14C)thymidine-labeled DNA or unlabeled bacteriophage phi X174 DNA was placed in specially designed quartz tubes at various depths for up to five days. Following exposure, DNA samples were removed to the laboratory where UV-B-induced pyrimidine dimers were quantified using a radiochromatographic assay, and bacteriophage DNA inactivation by solar UV-B was assayed by plaque formation in spheroplasts of Escherichia coli. Pyrimidine dimer induction was linear with time but the accumulation of dimers in DNA with time varied greatly with depth. Attenuation of dimer formation with depth of water was exponential. DNA at 3 m depth had only 17% of the pyrimidine dimers found at the surface. Bacteriophage phi X174 DNA, while reduced 96% in plaque-forming ability by a one day exposure to solar UV at the surface of the water, showed no effect on plaque formation after a similar exposure at 3 m. The data collected at the water's surface showed a "surface-enhanced dose" in that DNA damages at the real surface were greater than at the imaginary surface, which was obtained by extrapolating the data at depth to the surface. These results show the sensitivity of both the biochemical (dimers) and biological (phage plaques) DNA dosimeters. DNA dosimeters offer a sensitive, convenient and relatively inexpensive monitoring system, having both biochemical and biological endpoints for monitoring the biologically effective UV-B flux in the marine environment. Unlike physical dosimeters, DNA dosimeters do not have to be adjusted for biological effectiveness since they are sensitive only to DNA-mediated biologically effective UV-B radiation. Results of pyrimidine dimer induction in DNA by solar UV accurately predicted UV doses to the phage DNA.  相似文献   

17.
Abstract. Pyrimidine dimer sites associated with the newly-synthesized DNA were detected during post-replication repair of DNA in UV-irradiated human fibroblasts. These pyrimidine dimer sites were inferred from a decrease in the molecular weight of pulse-labelled DNA after treatment with an extract of Micrococcus luteus containing UV-specific endonuclease activity. In DNA synthesized immediately after irradiation the frequency of these daughter strand dimer sites was 7–20% of that in the parental DNA. Such sites were found in fibroblasts from normal donors and from xeroderma pigmentosum patients (with defects in excision-repair or post-replication repair). They were excised from the DNA of normal cells. As the time between UV-irradiation and pulse-labelling was increased, the frequency of dimer sites associated with the labelled DNA decreased. If the pulse-label was delivered 6 h after irradiation of normal cells or excision-defective xeroderma pigmentosum cells, no dimer sites were detected in the labelled DNA. It has usually been assumed that daughter-strand dimer sites were the result of recombinational exchanges. The assay procedure used in these experiments and in similar experiments of others did not distinguish between labelled DNA containing pyrimidine dimers within the labelled section, and labelled DNA which did not contain pyrimidine dimers but was attached to unlabelled DNA which did contain dimers. The latter structures would arise during normal replication immediately following UV-irradiation of mammalian cells. Calculations are presented which suggest that a significant proportion and conceivably all of the dimer sites associated with the daughter strands may have arisen in this way, rather than from recombinational exchanges as has been generally assumed.  相似文献   

18.
An important step in predicting the effects of future increases in UV radiation (UVR) is to evaluate the mechanisms that organisms use to prevent and repair DNA damage and determine how those mechanisms influence UVR sensitivity. Damage is prevented to varying degrees through photoprotection and repaired via two main pathways: nucleotide excision repair and photoenzymatic repair. At present, little is known about the generality or similarity of these defenses among temperate freshwater fishes. We used laboratory experiments to compare UVR defense mechanisms among five freshwater fish species representing four families and three orders. Purified DNA, freeze-killed larvae and live larvae were exposed to UVB radiation for 12 h in the presence or absence of photorepair radiation. After exposure, we quantified frequencies of cyclobutane pyrimidine dimers in each exposure treatment. All five species used photoprotection and proportional decreases in dimer frequency were similar for all species. Evidence of excision repair was also found for all species but proportional decreases in photoproduct frequencies varied among species. Finally, evidence of photoenzymatic repair was found for only two of the five species.  相似文献   

19.
The biological responses of four freshwater daphniid species, Daphnia middendorffiana, D. pulicaria, D. pulex and D. parvula, to a single acute dose of ultraviolet B radiation (UVB) were compared. In addition to survival, we compared the induction of DNA damage (i.e. cyclobutane pyrimidine dimers) between species as well as the ability to repair this damage in the presence or absence of photoreactivating light. All four species showed high levels of shielding against DNA damage when compared to damage induced in purified DNA dosimeters at the same time and dose. Significant variation in survival was observed between species depending on temperature and light conditions. Contrary to our expectations, all species showed significantly higher survival and light-dependent DNA damage removal rates at 10 degrees C compared to 20 degrees C, suggesting that the enhanced rate of photoenzymatic repair (PER) at the lower temperature contributed significantly to the recovery of these organisms from UVB. PER was highly effective in promoting survival of three of the four species at 10 degrees C, but at 20 degrees C it was only partially effective in two species, and ineffective in two others. None of the species showed significant dark repair at 20 degrees C and only D. pulicaria showed a significant capacity at 10 degrees C. Two species, D. middendorffiana and D. pulex, showed some short-term survival at 10 degrees C in absence of PER despite their inability to repair any appreciable amount of DNA damage in the dark. All species died rapidly at 20 degrees C in absence of PER, as predicted from complete or near-absence of nucleotide excision repair (NER). Overall, the protective effects of tissue structure and pigmentation were similar in all Daphnia species tested and greatly mitigated the absorption of UVB by DNA and its damaging effects. Surprisingly, the visibly melanotic D. middendorffiana was not better shielded from DNA damage than the three non-melanotic species, and in fact suffered the highest damage rates. Melanin content in this species was not temperature dependent under the experimental growth conditions, and so did not contribute to temperature-dependent responses. It is evident that different species within the same genus have developed diverse biological responses to UVB. Our data strongly suggest that DNA damage is lethal to Daphnia and that photoenzymatic repair is the primary mechanism for removing these lesions. In the absence of light, few species are capable of removing any DNA damage. Surprisingly, the single species in which significant excision repair was detected did so only at reduced temperature. This temperature-dependence of excision repair is striking and may reflect adaptations of certain organisms to stress in a complex and changing environment.  相似文献   

20.
Irradiation by health lamp (HL) light (280–320 nm) more efficiently induced cell killing and mutation in a radiation sensitive mutant (TW8) of Dictyostelium discoideum as compared with the parental wild-type strain (NC4). This light as well as a germicidal lamp-light (254 nm) produced pyrimidine dimers. The dimers were removed from DNA molecules by excision repair in NC4, but more slowly in TW8. It is suggested that pyrimidine dimers are the main DNA damage caused by HL light in D. discoideum , and that this results in cell killing and induced mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号