首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the swelling and exfoliation behavior of a layered protonic manganese oxide, H(0.13)MnO(2).0.7H(2)O, in a solution of tetrabutylammonium (TBA) hydroxide and the formation and characterizations of unilamellar two-dimensional crystallites of MnO(2). At low doses of TBA ions, layered manganese oxide was observed to undergo normal intercalation, yielding a TBA intercalated phase with a gallery height of 1.25 nm. With a large excess of TBA ions, osmotic swelling occurred, giving rise to a very large intersheet separation of 3.5-7 nm. In an intermediate TBA concentration range, the sample exhibited a broad X-ray diffraction profile with superimposed diffraction features due to intercalation and osmotic swelling. The component responsible for the broad profile was isolated by centrifuging the mixture twice at different speeds, and the recovered colloid was identified as a pile of MnO(2) nanosheets, corresponding to the individual host layer of the precursor layered manganese oxide. Observations by transmission electron microscopy and atomic force microscopy revealed high two-dimensional anisotropy with a lateral dimension of submicrometers and a thickness of approximately 0.8 nm. The nanosheet exhibited broad optical absorption with a peak at 374 nm (epsilon = 1.13 x 10(4) mol(-1) dm(3) cm(-1)). The restacking process of the colloidal MnO(2) nanosheets was followed by aging the colloid at a relative humidity of 95%. The broad diffraction pattern due to the exfoliated sheets weakened with time and eventually resolved into two sharp distinct profiles attributable to a TBA intercalation compound with an intersheet spacing of 1.72 nm and an osmotically swollen hydrate with >10 nm at a very early stage. As drying progressed, the former phase became more abundant without a change in interlayer distance, while the degree of swelling of the latter phase gradually decreased to 2.7 nm that remained unchanged on further aging. Subsequent drying at a lower humidity collapsed the 2.7 nm phase. The resulting single 1.72 nm phase was dehydrated by heating at 150 degrees C to produce a phase with a contracted interlayer spacing of 1.3 nm.  相似文献   

2.
Preparation of single-layer manganese oxide nanosheets (monosheets) comprised of edge-shared MnO(6) octahedra has relied on multistep processing involving a high-temperature solid-state synthesis of bulk templates, and ion-exchange and exfoliation reactions in solutions, requiring high cost and long processing time. Here we demonstrate the first single-step approach to directly access the MnO(2) monosheets, by the chemical oxidation of Mn(2+) ions in the presence of tetramethylammonium cations in an aqueous solution. Of importance is that this template-free reaction readily proceeds within a day at room temperature. The ability of the MnO(2) monosheets to self-assemble allows aggregation, to form layered structures with potassium cations and cationic tetrathiafulvalene analogues as intercalants. Furthermore, Langmuir-Blodgett (LB) films composed of the MnO(2) monosheets were successfully fabricated by the LB deposition method, in which about one layer of the monosheets was deposited for each process.  相似文献   

3.
An homologous series of layered oxysulfides Sr2MnO2Cu(2m-delta)S(m+1) with metamagnetic properties is described. Sr2MnO2Cu(2-delta)S2 (m = 1), Sr2MnO2Cu(4-delta)S3 (m = 2) and Sr2MnO2Cu(6-delta)S4 (m = 3), consist of MnO2 sheets separated from antifluorite-type copper sulfide layers of variable thickness by Sr(2+) ions. All three compounds show substantial and similar copper deficiencies (delta approximately equal to 0.5) in the copper sulfide layers, and single-crystal X-ray and powder neutron diffraction measurements show that the copper ions in the m = 2 and m = 3 compounds are crystallographically disordered, consistent with the possibility of high two-dimensional copper ion mobility. Magnetic susceptibility measurements show high-temperature Curie-Weiss behavior with magnetic moments consistent with high spin manganese ions which have been oxidized to the (2+delta)+ state in order to maintain a full Cu-3d/S-3p valence band, and the compounds are correspondingly p-type semiconductors with resistivities around 25 Omega cm at 295 K. Positive Weiss temperatures indicate net ferromagnetic interactions between moments. Accordingly, magnetic susceptibility measurements and low-temperature powder neutron diffraction measurements show that the moments within a MnO(2) sheet couple ferromagnetically and that weaker antiferromagnetic coupling between sheets leads to A-type antiferromagnets in zero applied magnetic field. Sr2MnO2Cu(5.5)S4 and Sr2MnO2Cu(3.5)S3 are metamagnets which may be driven into the fully ordered ferromagnetic state below 25 K by the application of fields of 0.06 and 1.3 T respectively. The relationships between the compositions, structures, and physical properties of these compounds, and the prospects for chemical control of the properties, are discussed.  相似文献   

4.
采用改进的Hummers法氧化石墨后,对其超声剥离成氧化石墨烯水溶液,继之通过乙二醇还原Pd金属离子和氧化石墨烯,得到了还原态氧化石墨烯(RGO)负载Pd纳米催化剂,并用于甲酸的电催化氧化.透射电子显微镜和X射线衍射结果显示:负载于RGO上的Pd粒子平均粒径为3.8nm,其优先在RGO的褶皱和边缘处生长.电化学测试表明:RGO上残存的含氧基团降低了Pd催化剂受CO毒化的程度,Pd/RGO催化剂表现出了较商业化Pd/C更高的电催化活性和更好的稳定性.  相似文献   

5.
Asymmetric manganese cluster, the active center of photosystem II (PSII) in nature, is hydrogen-bonded to surrounding amino acid residues and water molecules. This phenomenon is of great inspiration significance for developing and studying artificial Mn-based oxygen evolution reaction (OER) catalysts. Herein, we prepared manganese phosphate nanosheets through intercalation of ethylenediamine ions and water molecules ((EDAI)(H2O)MnPi) using a simple co-precipitation method. (EDAI)(H2O)MnPi is also hydrogen-bonded to interlayer ethylenediamine ions and water molecules, forming a hydrogen-bonding network. The morphology of the (EDAI)(H2O)MnPi sample was characterized by scanning electron microscopy (SEM) and transmission electron microscopy. The thickness of (EDAI)(H2O)MnPi was characterized by atomic force microscopy. The composition and structure of (EDAI)(H2O)MnPi were characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy. For control studies, manganese phosphate (EDAI)MnPi and (H2O)MnPi samples were also synthesized. The structure and morphology of (EDAI)MnPi and (H2O)MnPi samples were characterized by XRD and SEM. The difference between (EDAI)(H2O)MnPi, (EDAI)MnPi, and (H2O)MnPi were further characterized by thermal gravimetric analysis and derivative thermogravimetric analysis. Electrocatalytic properties of the (EDAI)(H2O)MnPi, (EDAI)MnPi, and (H2O)MnPi for OER were studied in 0.05 mol∙L−1 pH = 7 phosphate buffered saline solution, through linear sweep voltammetry, electrochemical impedance spectroscopy, and controlled potential electrolysis (CPE) test. The electrochemical surface area (ECSA) analyses of (EDAI)(H2O)MnPi, (EDAI)MnPi, and (H2O)MnPi samples were recorded by charging currents in the non-Faradaic potential region at different scan rates. Considering the different ECSAs of different materials, the water oxidation activities of three materials were normalized by ECSA. Compared with counterparts of (EDAI)MnPi (610 mV) and (H2O)MnPi (580 mV), manganese phosphate nanosheets (EDAI)(H2O)MnPi exhibited a lower overpotential of 520 mV when driving a current density of 1 mA∙cm−2 in neutral conditions. The CPE experiment revealed that (EDAI)(H2O)MnPi remained active for at least 10 h. Manganese phosphate nanosheets containing a rich, extensive, and continuous hydrogen bond network exhibited improved OER performance in neutral conditions. The hydrogen-bonding network in manganese phosphate nanosheets has similar functions to the hydrogen-bonding network in PSII, which could accelerate the transfer rate of protons and facilitate electrocatalytic water oxidation. This study may provide guidance for the design of water oxidation catalysts with rich hydrogen bond network.  相似文献   

6.
Multilayered manganese oxide nanocomposites intercalated with strong (poly(diallyldimethylammonium) chloride, PDDA) and weak (poly(allylamine hydrochloride), PAH) polyelectrolytes can be produced on polycrystalline platinum electrode in a thin film form by a simple, one-step electrochemical route. The process involves a potentiostatic oxidation of aqueous Mn2+ ions at around +1.0 V (vs Ag/AgCl) in the presence of polyelectrolytes. Fully charged PDDA polycations are accommodated tightly in the interlayer space by electrostatic interaction with negative charges on the manganese oxide layers, leading to an interlayer distance of 0.97 nm. The layered film prepared with PAH has a larger polymer content (PAH/Mn molar ratio of 0.98) than that (PDDA/Mn molar ratio of 0.43) made with PDDA because of the smaller charging degree of PAH, exhibiting a larger interlayer distance (1.19 nm). The interlayer PAH contains neutral (-NH2) and positively charged (-NH3(+)) amine groups, and the -NH3(+) groups are associated with Cl- (to generate -NH3(+) Cl- ion pairs) as well as the negatively charged manganese oxide layers. Both polyelectrolytes once incorporated were not ion exchanged with small cations in solution. The layered structure of PDDA/MnO(x) was collapsed during the reduction process in a KCl electrolyte solution, accompanying an expansion of the interlayer as a result of incorporation of K+ ions for charge neutrality. On the contrary, the layered PAH/MnO(x) film showed a good electrochemical response due to the redox reaction of Mn3+/Mn4+ couple with no change in the structure. X-ray photoelectron spectroscopy revealed that, in this case, excess negative charges generated on the manganese oxide layers upon reduction can be balanced by the protons being released from the -NH3(+) Cl- sites in the interlayer PAH; the Cl- anions becoming unnecessary are inevitably excluded from the interlayer, and vice versa upon oxidation.  相似文献   

7.
Ultrathin films composed of ruthenate nanosheets (RuO(2)ns) were fabricated via electrostatic self-assembly of unilamellar RuO(2)ns crystallites derived by total exfoliation of an ion-exchangeable layered ruthenate. Ultrathin films with submonolayer to monolayer RuO(2)ns coverage and multilayered RuO(2)ns thin films were prepared by controlled electrostatic self-assembly and layer-by-layer deposition using a cationic copolymer as the counterion. Electrical properties of a single RuO(2)ns crystallite were successfully measured by means of scanning probe microscopy. The sheet resistance of an isolated single RuO(2)ns crystallite was 12 kΩ sq(-1). Self-assembled submonolayer films behaved as a continuous conducting film for coverage above 70%, which was discussed based on a two-dimensional percolation model. Low sheet resistance was attained for multilayered films with values less than 1 kΩ sq(-1). Interestingly, the grain boundary resistance between nanosheets seems to contribute only slightly to the sheet resistance of self-assembled films.  相似文献   

8.
We report a novel design, based on a combination of lanthanide-doped upconversion nanoparticles and manganese dioxide nanosheets, for rapid, selective detection of glutathione in aqueous solutions and living cells. In this approach, manganese dioxide (MnO(2)) nanosheets formed on the surface of nanoparticles serve as an efficient quencher for upconverted luminescence. The luminescence can be turned on by introducing glutathione that reduces MnO(2) into Mn(2+). The ability to monitor the glutathione concentration intracellularly may enable rational design of a convenient platform for targeted drug and gene delivery.  相似文献   

9.
由于具有开放骨架的金属磷酸盐在催化、吸附、主客体组装以及光学、磁学等方面的应用[1~3],因此合成具有开放骨架的金属磷酸盐一直吸引着人们的广泛关注。自从1982年美国联合碳化公司(U.C.C.)开发出系列磷酸铝分子筛AlPO4鄄n[4]以来,大量具有开放骨架的金属磷酸盐(金属=Ga,In,F  相似文献   

10.
A wet chemical route for the preparation of MnO(2) nanosheet/Au nanoparticle/MWNT hybrid materials is developed. The Au nanoparticles are prepared by reducing AuCl(4)(-) with citrate and attached to thiol-modified MWNTs. Owing to the reducing property and the binding ability to Mn-containing species of capping agents surrounded the Au nanoparticles, the MnO(2) nanosheets are formed on the surface of Au nanoparticles. The ternary nanocomposites of MnO(2)/Au/MWNT have been characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and FT-IR spectroscopy. The affiliation of MnO(2) nanosheets into the hybrids remarkably enhances the electrocatalytic performance of Au nanoparticle/MWNT towards the oxygen reduction reaction. The specific capacitance of the ternary hybrids is also increased dramatically comparing with that of Au/MWNT.  相似文献   

11.
Homogeneously mixed colloidal suspensions of reduced graphene oxide, or RGO, and layered manganate nanosheets have been synthesized by a simple addition of the exfoliated colloid of RGO into that of layered MnO(2). The obtained mixed colloidal suspensions with the RGO/MnO(2) ratio of ≤0.3 show good colloidal stability without any phase separation and a negatively charged state with a zeta (ζ) potential of -30 to -40?mV. The flocculation of these mixed colloidal suspensions with lithium cations yields porous nanocomposites of Li/RGO-layered MnO(2) with high electrochemical activity and a markedly expanded surface area of around 70-100?m(2) g(-1). Relative to the Li/RGO and Li/layered MnO(2) nanocomposites (≈116 and ≈167?F?g(-1)), the obtained Li/RGO-layered MnO(2) nanocomposites deliver a larger capacitance of approximately 210?F?g(-1) with good cyclability of around 95-97?% up to the 1000th cycle, thus indicating the positive effect of hybridization on the electrode performances of RGO and lithium manganate. Also, an electrophoretic deposition of the mixed colloidal suspensions makes it possible to easily fabricate uniform hybrid films composed of graphene and manganese oxide. The obtained films show a distinct electrochemical activity and a homogeneous distribution of RGO and MnO(2). The present experimental findings clearly demonstrate that the utilization of the mixed colloidal suspensions as precursors provides a facile and universal methodology to synthesize various types of graphene/metal oxide hybrid materials.  相似文献   

12.

The composite containing reduced graphene oxide and MnO nanoparticles (RGO/MnO) has been prepared via a one step pyrolysis method. The MnO nanoparticles were uniformly dispersed on the surface of RGO nanosheets forming MnO/RGO composite. The composite displays a maximum absorption of ‒38.9 dB at 13.5 GHz and the bandwidth of reflection loss corresponding to –10 dB can reach 4.9 GHz (from 11.5 to 16.4 GHz) with a coating layer thickness of only 2 mm. Therefore, the obtained RGO/MnO composite a perfect lightweight and high-performance electromagnetic wave absorbent.

  相似文献   

13.
We demonstrate a highly efficient and large area synthesis of 2-D graphene nanosheets on the surface of flexible graphite foils by electrochemical exfoliation of graphite in an effective electrolyte, poly(sodium-4-styrenesulfonate) solution.A constant current of 150 mA/cm was applied to the vertically aligned graphite (anode) and copper (cathode) sheet in the PSS electrolyte solution during a preset time for electrolytic surface exfoliation of the graphite sheet; uniform expansion of the graphite foil was observed. This expanded foil was characterized using scanning electron microscopy, confocal laser scanning microscopy, and high-resolution transmission electron microscopy. Furthermore, we demonstrate the ability of this high surface area foil, covered with uniform graphene, to enable improved electrolyte permeability and Li ion transfer, thereby enhancing electrochemical performance of Li ion battery electrodes.  相似文献   

14.
To elucidate the formation process of precursor of gold-supported manganese dioxide (MnO2), the coprecipitation behavior of [AuCl4-n(OH)n](-) (n=0-4) (Au(III)) complex ions with manganese(II) hydroxide (Mn(OH)2 and the change in their chemical state were examined. The Au(III) complex ions were rapidly and effectively coprecipitated with Mn(OH)(2) at pH 9. According to the M?ssbauer spectra for gold (Au) coprecipitated with Mn(OH)2, below an Au content of 60 wt% in the coprecipitates, all of the coprecipitated Au existed in the atomic state (Au(0)), while, above an Au content of 65 wt%, part of the gold existed in the Au(III) state, and the proportion increased with increasing coprecipitated Au content. Based on the results of X-ray photoelectron spectroscopy, Mn(II) in Mn(OH)2 converted to Mn(IV) in conjunction with coprecipitation of Au(III) complex ions. These results indicate that the rapid stoichiometric reduction of Au(III) to Au(0) is caused by electron transfer from Mn(II) in Mn(OH)2 to the Au(III) complex ion through an Mn-O-Au bond.  相似文献   

15.
In this work a titration technique has been used to characterize the amphoteric surface properties of a series of chemically reduced electrolytic manganese dioxide (EMD) samples (MnO 1.97 to MnO 1.50). The surface of the EMD was found to consist of independent acidic and basic hydroxyl groups, which were able to be characterised by their respective equilibrium constants and site concentrations. For this chemically reduced series Kb varied from (1.81-8.43)x10(-10) as reduction proceeded, with the corresponding basic site concentration varying from (0.20-2.50)x10(-4) mol/m2 over the pH range considered. Ka was ranged from (1.23-9.23)x10(-6) over the reduction range considered. The increase in Kb suggested a weakening of the MnO bond via the introduction of the larger Mn3+ ions which will increase the length of this bond. Weakening the MnO bond results in a corresponding strengthening of the OH bond giving the surface hydroxyl group a basic nature which is supported by the increasing basic site concentration. For the samples with an x in MnOx value above 1.71 the total number of acidic sites decreased which supports the increase in the concentration of basic sites; however, below 1.71, the surface concentration of acidic sites increases slightly, which can be rationalised by the fact that the pyrolusite domains within the EMD (with relatively stronger MnO bonds) are accessible at this stage of the reduction. The number of surface oxide sites (Ns) and surface hydroxyl sites (Ns(OH)) were calculated crystallographically, and from the sum of the acid and basic hydroxyl groups determined by titration. Both methods produced data with the same order of magnitude, as well as indicated the expected increase in the number of surface hydroxyl groups with increasing degree of reduction. Electrochemical analysis of the samples in 9 M KOH showed the expected decrease in capacity with an increase in the degree of reduction. It also showed a decrease in the amount of charge contributed to the overall homogeneous reduction by Mn4+ ions in surface defects and within the ramsdellite domains over the entire x in MnOx range. However, the amount of charge contributed from the pyrolusite domains remained unchanged until after a x in MnOx value of 1.71.  相似文献   

16.
Reduction of La(1-x)Ca(x)MnO(3) (0.6 ≤ x ≤ 1) perovskite phases with sodium hydride yields materials of composition La(1-x)Ca(x)MnO(2+δ). The calcium-rich phases (x = 0.9, 1) adopt (La(0.9)Ca(0.1))(0.5)Mn(0.5)O disordered rocksalt structures. However local structure analysis using reverse Monte Carlo refinement of models against pair distribution functions obtained from neutron total scattering data reveals lanthanum-rich La(1-x)Ca(x)MnO(2+δ) (x = 0.6, 0.67, 0.7) phases adopt disordered structures consisting of an intergrowth of sheets of MnO(6) octahedra and sheets of MnO(4) tetrahedra. X-ray absorption data confirm the presence of Mn(I) centers in La(1-x)Ca(x)MnO(2+δ) phases with x < 1. Low-temperature neutron diffraction data reveal La(1-x)Ca(x)MnO(2+δ) (x = 0.6, 0.67, 0.7) phases become antiferromagnetically ordered at low temperature.  相似文献   

17.
18.
The first layered manganese(III) oxide chlorides, Sr2MnO3Cl and Sr4Mn3O8-yCl2, have been synthesised; Sr2MnO3Cl adopts a K2NiF4 type structure with sheets of MnO5 square based pyramids linked through oxygen and separated by SrCl layers; it is the end member of a new family of Ruddlesden-Popper type manganese oxide halides which includes the three-layer member Sr4Mn3O8-yCl2 also reported herein.  相似文献   

19.
Silica-supported manganese oxide catalysts with loadings of 3, 10, 15, and 20 wt % (as MnO2) were characterized with use of X-ray absorption spectroscopy and X-ray diffraction (XRD). The edge positions in the X-ray absorption spectra indicated that the oxidation state for the manganese decreased with increasing metal oxide loading from a value close to that of Mn2O3 (+3) to a value close to that of Mn3O4 (+2(2)/3). The XRD was consistent with these results as the diffractograms for the supported catalysts of higher manganese oxide loading matched those of a Mn3O4 reference. The reactivity of the silica-supported manganese oxide catalysts in acetone oxidation with ozone as an oxidant was studied over the temperature range of 300 to 600 K. Both oxygen and ozone produced mainly CO2 as the product of oxidation, but in the case of ozone the reaction temperature and activation energy were significantly reduced. The effect of metal oxide loading was investigated, and the activity for acetone oxidation was greater for a 10 wt % MnOx/SiO2 catalyst sample compared to a 3 wt % MnOx/SiO2 sample.  相似文献   

20.
The colloidal dispersion stability of nano-sized graphene sheets in supercritical fluid (SCF) media is very important for developing SCF-based exfoliation and dispersion technologies for stabilization and solubilization of graphenes. We carried out molecular dynamics simulations to elucidate the stability mechanism of graphene in supercritical CO(2) (scCO(2)). The potential of mean force (PMF) between two graphene nanosheets in scCO(2) was simulated, and the effect of scCO(2) density and temperature on the PMF behavior has been investigated. The simulation results demonstrate that there exists a free energy barrier between graphenes in the scCO(2) fluid, possibly obstructing the aggregation of graphenes. The single-layer confined CO(2) molecules between the graphene sheets can induce a dominating repulsion interaction between graphene sheets. At higher scCO(2) fluid density, there are more confined CO(2) molecules within the interplate regions, resulting in a stronger repulsive free energy barrier. The effect of temperature on the PMF is relatively minor. The scCO(2) solvent structure shows layered confined arrangement in the interfacial region near the graphene nanosheets, which is correlated well with the PMF profile curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号