首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
张立 《中国物理》2006,15(5):1101-1109
The polar interface optical (IO) and surface optical (SO) phonon modes and the corresponding Froehlich electron phonon-interaction Hamiltonian in a freestanding multi-layer wurtzite cylindrical quantum wire (QWR) are derived and studied by employing the transfer matrix method in the dielectric continuum approximation and Loudon's uniaxial crystal model. A numerical calculation of a freestanding wurtzite GaN/AlN QWR is performed. The results reveal that for a relatively large azimuthal quantum number m or wave-number kz in the free z-direction, there exist two branches of IO phonon modes localized at the interface, and only one branch of SO mode localized at the surface in the system. The degenerating behaviours of the IO and SO phonon modes in the wurtzite QWR have also been clearly observed for a small kz or m. The limiting frequency properties of the IO and SO modes for large kz and m have been explained reasonably from the mathematical and physical viewpoints. The calculations of electron-phonon coupling functions show that the high-frequency IO phonon branch and SO mode play a more important role in the electron phonon interaction.  相似文献   

2.
Polarons in a cylindrical quantum well wire with finite confining potential   总被引:1,自引:0,他引:1  
The polaron self-energy and the correction to the electron effective mass in a cylindrical quantum well wire (QWW) are studied by the perturbation approach. The interactions of electrons with different phonon modes in the QWW system, including the confined longitudinal optical phonon modes, in the wire (LO1), in the barrier materials (LO2) and in the interface optical (IO) phonon modes, are considered. The result shows that the LO1 phonon’s contribution to the polaron self-energy increases gradually as the radius of the wire increases, and finally reaches that of the three-dimensional limit, while the LO2 phonon contributes only when the radius of the wire is very small. Also, the contribution of the IO phonon modes first increases quickly as the wire radius increases and soon reaches a maximum, then reduces to zero monotonically.  相似文献   

3.
Within the framework of the dielectric continuum model, interface optical(IO) and surface optical(SO) phonon modes and the Fr?hlich electron-IO (SO) phonon interaction Hamiltonian in a multi-shell spherical system were derived and studied. Numerical calculation on CdS/HgS/H2O and CdS/HgS/CdS/H2O spherical systems have been performed. Results reveal that there are two IO modes and one SO mode for the CdS/HgS/H2O system, one SO mode and four IO modes whose frequencies approach the IO phonon frequencies of the single CdS/HgS heterostructure with the increasing of the quantum number l for CdS/HgS/CdS/H2O. It also showed that smaller l and SO phonon compared with IO phonon, have more significant contribution to the electron-IO (SO) phonon interaction. Received 16 October 2001 and Received in final form 23 January 2002 Published online 25 June 2002  相似文献   

4.
Within the framework of the macroscopic dielectric continuum model and Loudon's uniaxial crystal model, the phonon modes of a wurtzite/zinc-blende one-dimensional (1D) cylindrical nanowire (NW) are derived and studied. The analytical phonon states of phonon modes are given. It is found that there exist two types of polar phonon modes, i.e. interface optical (IO) phonon modes and the quasi-confined (QC) phonon modes existing in 1D wurtzite/zinc-blende NWs. Via the standard procedure of field quantization, the Fröhlich electron-phonon interaction Hamiltonians are obtained. Numerical calculations of dispersive behavior of these phonon modes on a wurtzite/zinc-blende ZnO/MgO NW are performed. The frequency ranges of the IO and QC phonon modes of the ZnO/MgO NWs are analyzed and discussed. It is found that the IO modes only exist in one frequency range, while QC modes may appear in three frequency ranges. The dispersive properties of the IO and QC modes on the free wave-number kz and the azimuthal quantum number m arediscussed. The analytical Hamiltonians of electron-phonon interaction obtained here are quite useful for further investigating phonon influence on optoelectronics properties of wurtzite/zinc-blende 1D NW structures.  相似文献   

5.
The dispersions of the top interface optical phonons and the side interface optical phonons in cylindrical quantum dots are solved by using the dielectric continuum model. Our calculation mainly focuses on the frequency dependence of the IO phonon modes on the wave-vector and quantum number in the cylindrical quantum dot system. Results reveal that the frequency of top interface optical phonon sensitively depends on the discrete wave-vector in z direction and the azimuthal quantum number, while that of the side interface optical phonon mode depends on the radial and azimuthal quantum numbers. These features are obviously different from those in quantum well, quantum well wire, and spherical quantum dot systems. The limited frequencies of interface optical modes for the large wave-vector or quantum number approach two certain constant values, and the math and physical reasons for this feature have been explained reasonably.  相似文献   

6.
The optical phonon modes and electron–optical-phonon interaction in fan-shaped quantum dot and quantum wire are studied with the dielectric continuum (DC) model and separation of variables. The explicit expressions for the longitudinal optical (LO) and interface optical (IO) phonon eigenmodes are deduced. It is found that there exist two types of IO phonon modes: top interface optical (TIO) phonon mode and arc interface optical (AIO) phonon mode, in a fan-shaped quantum dot. After having quantized the eigenmodes, we derive the Hamiltonian operators describing the LO and IO phonon modes as well as the corresponding Fröhlich electron–phonon interaction. The potential applications of these results are also discussed.  相似文献   

7.
Under dielectric continuum approximation, interface optical (IO) phonon modes and the Frohlich electron-IO phonon interaction Hamiltonian in a multi-shell spherical nanoheterosystem were derived and studied. Numericalcalculations on three-layer and four-layer CdS/HgS spherical nanoheterosystems have been performed. Results revealthat there are four IO phonon modes for the three-layer system and six IO phonon modes for the four-layer system.On each interface, there are two IO phonon modes, the frequency of one is between WTO,CdS and WLO,CdS, and that ofthe other is between WTO,HgS and WLO,HgS. With the increasing of quantum number l, the frequency of each IO modeapproaches one of the two frequency values of the single CdS/HgS heterostructure, and the potential for each IO modeis more and more localized at a certain interface, furthermore, the coupling between the electron-lO phonons becomes weaker.  相似文献   

8.
Based on the macroscopic dielectric continuum model and Loudon’s uniaxial crystal model, the polar optical phonon modes of a quasi-0-dimensional (Q0D) wurtzite spherical nanocrystal embedded in zinc-blende dielectric matrix are derived and studied. It is found that there are two types of polar phonon modes, i.e. interface optical (IO) phonon modes and the quasi-confined (QC) phonon modes coexisting in Q0D wurtzite ZnO nanocrystal embedded in zinc-blende MgO matrix. Via solving Laplace equations under spheroidal and spherical coordinates, the unified and analytical phonon states and dispersive equations of IO and QC modes are derived. Numerical calculations on a wurtzite/zinc-blende ZnO/MgO nanocrystal are performed. The frequency ranges of the IO and QC phonon modes of the ZnO/MgO nanocrystals are analyzed and discussed. It is found that the IO modes only exist in one frequency range, while QC modes may appear in three frequency ranges. The dispersive frequencies of IO and QC modes are the discrete functions of orbital quantum numbers l and azimuthal quantum numbers m. Moreover, a pair of given l and m corresponds to one IO mode, but to more than one branches of QC. The analytical phonon states and dispersive equations obtained here are quite useful for further investigating Raman spectra of phonons and other relative properties of wurtzite/zinc-blende Q0D nanocrystal structures.  相似文献   

9.
We report the electron resonant Raman scattering (ERRS) process related to the longitudinal optical (LO), interface optical (IO) and quasi-confined (QC) phonons in a cylindrical GaN-AlN quantum well wire (QWW). We present the differential cross-section (DCS) and study the selection rules. Results reveal that the emitted photon frequency decreases with increasing the radius because of the size-selective Raman scattering effect and the built-in electric field. The contribution to the DCS mainly stems from the GaN-type LO (LO1), QC and IO phonons when the wire is thin, but the LO1 and QC phonons are dominant for the thick wire.  相似文献   

10.
A variational method and a memory function approach are adopted to investigate the electron mobility parallel to the interface for a model AlxGa1-xAs/GaAs heterojunction and its pressure effect by considering optical phonon modes (including both of the bulk longitudinal optical (LO) in the channel side and interface optical (IO) phonons). The influence of a realistic interface heterojunction potential with a finite barrier and conduction band bending are taken into account. The properties of electron mobility versus Al concentration, electronic density and pressure are given and discussed, respectively. The results show that the electron mobility increases with Al concentration and electronic density, whereas decreases with pressure from 0 to 40 kbar obviously. The Al concentration dependent and the electron density dependent contributions to the electron mobility from the scattering of IO phonons under pressure becomes more obvious. The variation of electron mobility with the Al concentration and electron density are dominated by the properties of IO and LO phonons, respectively. The effect of IO phonon modes can not be neglected especially for higher pressure and electronic density.  相似文献   

11.
With the aid of the macroscopic dielectric continuum and Loudon’s uniaxial crystal models, the propagating (PR) and half-space (HS) optical phonon modes and corresponding Fröhlich-like electron-phonon interaction Hamiltonians in a quasi-one-dimensionality (Q1D) wurtzite quantum well wire (QWW) structure are derived and studied. Numerical calculations on a wurtzite GaN/Al0.15Ga0.85N QWW are performed, and discussion is focused mainly on the dependence of the frequency dispersions of PR and HS modes on the free wave-number k z in the z-direction and on the azimuthal quantum number m. The calculated results show that, for given k z and m, there usually exist infinite branches of PR and HS modes in the high-frequency range, and only finite branches of HS modes in the low-frequency range in wurtzite QWW systems. The reducing behaviors of the PR modes to HS modes, and of the HS mode to interface phonon mode have been observed clearly in Q1D wurtzite heterostructures. Moreover, the dispersive properties of the PR and HS modes in Q1D QWWs have been compared with those in Q2D quantum well structures. The underlying physical reasons for these features have also been analyzed in depth.  相似文献   

12.
Under the dielectric continuum model and Loudon's uniaxial crystal model, the polar optical phonon modes in a wurtzite multi-shell cylindrical heterostructure are analyzed and discussed. The analytical electrostatic potential functions are presented for all the five types of polar optical phonon modes including the interface optical (IO) modes, the propagating (PR) modes, the quasi-confined (QC) modes, the half-space-like (HSL) modes and the exactly confined (EC) modes. By adopting a transfer matrix method, the free IO and PR phonon fields and corresponding Fröhlich electron -IO and -PR interaction Hamiltonians are obtained via the method of electrostatic potential expansion. The analytical formulas are universal and can be applied to single, double and some complex cylindrical wurtzite quantum systems.  相似文献   

13.
14.
By using the dielectric continuum model, the side interface optical (SIO) and top interface optical (TIO) phonon modes for a cone-shaped GaAs/AlxGal-xAs quantum dot with a spherical top surface are obtained. It is found that, unlike the TI0 mode which shows the same results as those for spherical GaAs/AlxGal-xAs quantum dots, the SIO phonon frequencies depend on not only the integer l, but also the integer |m| as well as the polar angle α, and the frequency behavior of all the different modes is also strongly dependent on x. It is useful to study the couplings between electrons and phonons for those like this system.  相似文献   

15.
Under the dielectric continuum model and separation of variables, the interface optical (IO) phonon modes and electron-optical-phonon interaction in rectangular quantum wire and quantum dot embedded in a nonpolar matrix are studied. We found that there exist various types of IO phonon modes in rectangular nanostructures. The IO phonon modes in rectangular quantum wire include IO-propagating (IO-PR) and IO-IO hybrid phonon modes, while the IO phonon modes in rectangular quantum dot contain IO-IO-PR and IO-PR-PR hybrid phonon modes. The results of numerical calculation show that these hybrid phonon modes contain corner optical (CO) phonon modes and edge optical (EO) phonon modes. The potential applications of these results are also discussed.  相似文献   

16.
Within the framework of the dielectric continuum (DC) model, the optical phonon modes and electron-optical-phonon interaction in hemispherical quantum dot are investigated. The proper eigenfunctions for longitudinal optical (LO) and interface optical (IO) phonon modes are constructed. After having quantized the eigenmodes, we derive the Hamiltonian operators describing the LO and IO phonon modes as well as the corresponding Fröhlich electron-phonon interaction. The dispersion relation of IO phonon modes is size independent. The potential applications of these results are also discussed.  相似文献   

17.
By using determinant method as in our recent work, the IO phonon modes, the orthogonal relation forpolarization vector, electron-IO phonon Frohlich interaction Hamiltonian, the dispersion relation, and the electron-phonon coupling function in an arbitrary layer-number quantum well system have been derived and investigated withinthe framework of dielectric continuum approximation. Numerical calculation on seven-layer Alx Ga1-x As/GaAs systemshave been performed. Via the numerical results in this work and previous works, the general characters of the IO phononmodes in an n-layer coupling quantum well system were concluded and summarized. This work can be regarded as ageneralization of previous works on IO phonon modes in some fixed layer-number quantum well systems, and it providesa uniform method to investigate the effects of IO phonons on the multi-layer coupling quantum well systems.  相似文献   

18.
By using the transfer matrix method, within the framework of the dielectric continuum approximation,uniform forms for the interface optical (IO) phonon modes as well as the corresponding electron-IO phonon interaction Hamiltonians in n-layer coupling low-dimensional systems (including the coupling quantum well (CQ W), coupling quantum-well wire (CQWW), and coupling quantum dot (CQD)) have been presented. Numerical calculations on the three-layer asymmetrical AIGaAs/GaAs systems are performed, and the analogous characteristics for limited frequencies of IO phonon in the three types of systems (CQW, CQWW, and CQD) when the wave-vector and the quantum number approach zero or infinity are analyzed and specified.  相似文献   

19.
By using the transfer matrix method, within the framework of the dielectric continuum approximation, uniform forms for the interface optical (IO) phonon modes as well as the corresponding electron-IO phonon interaction Hamiltonians in n-layer coupling low-dimensional systems (including the coupling quantum well (CQW), coupling quantum-well wire (CQWW), and coupling quantum dot (CQD)) have been presented. Numerical calculations on the three-layer asymmetrical AlGaAs/GaAs systems are performed, and the analogous characteristics for limited frequencies of IO phonon in the three types of systems (CQW, CQWW, and CQD) when the wave-vector and the quantum number approach zero or infinity are analyzed and specified.  相似文献   

20.
ZHANG Li 《理论物理通讯》2006,46(6):1109-1112
By employing the dielectric continuum model and Loudon's uniaxial crystal model, the interface optical (IO) phonon modes in a freestanding quasi-one-dimensional (Q1D) wurtzite rectangular quantum wire are derived and analyzed. Numerical calculation on a freestanding wurtzite GaN quantum wire is performed. The results reveal that the dispersion frequencies of IO modes sensitively depend on the geometric structures of the Q1D wurtzite rectangular quantum wires, the free wave-number kz in z-direction and the dielectric constant of the nonpolar matrix. The degenerating behavior of the IO modes in Q1D wurtzite rectangular quantum wire has been clearly observed in the case of small wave-number kz and large ratio of length to width of the rectangular crossing profile. The limited frequency behaviors of IO modes have been analyzed deeply, and detailed comparisons with those in wurtzite planar quantum wells and cylindrical quantum wires are also done. The present theories can be looked on as a generalization of that in isotropic rectangular quantum wires, and it can naturally reduce to the case of Q1D isotropic quantum wires once the anisotropy of the wurtzite material is ignored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号