首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 815 毫秒
1.
Magnetoelectric (ME) nanocomposites containing Ni0.75Co0.25Fe2O4-BiFeO3 phases were prepared by citrate sol-gel process. X-ray diffraction (XRD) analysis showed phase formation of xNi0.75Co0.25Fe2O4-(1−x)BiFeO3 (x=0.1, 0.2, 0.3 and 0.4) composites on heating at 700 °C. Transmission electron microscopy revealed the formation of powders of nano order size and the crystal size was found to vary from 30 to 85 nm. Dispersion in dielectric constant (ε) and dielectric loss (tan δ) in the low-frequency range have been observed. It is seen that nanocomposites exhibit strong magnetic properties and a large ME effect. On increasing Ni0.75Co0.25Fe2O4 contents in the nanocomposites, the saturation magnetization (MS) and coercivity (HC) increased after annealing at 700 °C. The large ME output in the nanocomposites exhibits strong dependence on magnetic bias and magnetic field frequency. The large value of ME output can be attributed to small grain size of ferrite phase of nanocomposite being prepared by citrate precursor process.  相似文献   

2.
Core-shell Co(1−x)NixFe2O4/polyaniline nanoparticles, where the core was Co(1−x)NixFe2O4 and the shell was polyaniline, were prepared by the combination of sol-gel process and in-situ polymerization methods. Nanoparticles were investigated by Fourier transform spectrometer, X-ray diffraction diffractometer, Scanning electron microscope, Differential thermal analysis and Superconductor quantum interference device. The results showed that the saturation magnetization of pure Co(1−x)NixFe2O4 nanoparticles were 57.57 emu/g, but Co(1−x)NixFe2O4/polyaniline composites were 37.36 emu/g. It was attributed to the lower content (15 wt%), smaller size and their uneven distribution of Co(1−x)NixFe2O4 nanoparticles in the final microsphere composites. Both Co(1−x)NixFe2O4 and PANI/Co(1−x)NixFe2O4 showed superparamagnetism.  相似文献   

3.
The nanocrystalline Ni0.53Cu0.12Zn0.35Fe1.88O4 and BaTiO3 powders were prepared using Microwave-Hydrothermal (M-H) method at 160 °C/45 min. The as synthesized powders were characterized using the X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). The size of the powders that were synthesized using M-H system was found to be ∼30 and ∼50 nm for ferrite phase and ferroelectric phases, respectively. The powders were densified using microwave sintering method at 900 °C/30 min. The ferrite and ferroelectric phases were observed from XRD and morphology of the composites was observed with the Scanning Electron Microscope (SEM).The magnetic hysteresis loops were recorded using the Vibrating Sample Magnetometer (VSM).The frequency dependence of real (μ′) and imaginary (μ″) parts of permeability was measured in the range of 1 MHz-1.8 GHz. The permeability decreases with an increase of BaTiO3 content at 1 MHz. The transition temperature (TC) of ferrite was found to be 245 °C. The TC of composite materials decreases with an increase in BaTiO3 content.  相似文献   

4.
Magnetoelectric composites of Ni0.8Co0.1Cu0.1Fe2O4 and Lead Zirconate Titanate (PZT) were prepared by using conventional ceramic method. The measured values of saturation magnetization (Ms) and magnetic moments (μB) are in accordance with the volume fraction of ferrite content in the composite. The dielectric constant of the composites decreases with frequency. The plots of dielectric constant () against temperature (T) show a peak at their respective transition temperatures. The ME output was measured by varying dc bias magnetic field. A large ME output signal of 776 mV/cm was observed for 35% ferrite +65% ferroelectric composite. The magnetoelectric (ME) response is found to be dependent on the content of ferrite phase.  相似文献   

5.
Magnetoelectric composites of NiFe2O4 and Ba0.8Sr0.2TiO3 were prepared using conventional double-sintering ceramic method. The phase formation of magnetoelectric composites was confirmed by XRD technique. Variation of dielectric constant and loss tangent at room temperature with frequency in the range 100 Hz-1 MHz has been studied. Also the variation of dielectric constant and loss tangent with temperature and composition at fixed frequencies of 1 kHz, 10 kHz, 100 kHz and 1 MHz is reported. The static value of the magnetoelectric conversion factor was measured as a function of intensity of the magnetic field. The ME voltage coefficient of about 430 μV/cm Oe was observed for 15% NiFe2O4+85% Ba0.8Sr0.2TiO3 composite. All the samples show linear variation of magnetoelectric conversion in the presence of static magnetic field.  相似文献   

6.
Magnetoelectric (ME) composites consisting of ferrite phase (x) Ni0.5Zn0.5Fe2O4+ferroelectric phase (1−x)Pb Zr0.8Ti0.2O3 (Lead Zirconate Titanate—PZT) in which x (mol%) varies between 0 and 1 (0.0≤x≤1.0) was synthesized by double sintering ceramic method. The presence of constituent phases of ferrite, ferroelectric and their composites was confirmed by X-ray diffraction studies. The hysteresis measurement was used to study magnetic properties such as saturation magnetization (MS) and magnetic moment (μB). The existence of single domain (SD) particle in the ferrite phase and mixed (SD+MD) particle in the composites was studied from AC susceptibility measurements. ME voltage coefficient for each mol% of ferrite phase was measured as a function of applied DC magnetic field and at the same time influence of magnetic field on ME response and resistivity of composites was studied. The maximum ME voltage coefficient of 0.84 mV/cm Oe was observed for 15% of ferrite phase and 85% of ferroelectric phase in the composites.  相似文献   

7.
In this work, The magnetoelastic properties of polycrystalline samples of Tb3 (Fe28−xCox) V1.0 (x=0, 3, 6) intermetallic compounds are investigated by means of linear thermal expansion and magnetostriction measurements in the temperature range of 77–515 K under applied magnetic fields up to 1.5 T. The linear thermal expansion increases with the Co content. The well-defined anomalies observed in the linear thermal expansion coefficients for Tb3 (Fe28−xCox) V1.0 (x=0, 3, 6) compounds are associated with the magnetic ordering temperature for x=0 and spin reorientation temperatures for x=3, 6. Below transition temperatures, the value of the longitudinal magnetostriction (λPa) at 1.6 T increases with Co content.  相似文献   

8.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

9.
Synthesis by arc melting, the structural and the electric properties of Y(Co1−xNix)2 alloys were studied by X-ray diffraction (XRD) and four probe dc electrical measurements. XRD analysis (300 K) shows that all samples crystallize in a cubic MgCu2-type structure. The lattice parameters linearly decrease with Ni content. Electrical resistivity for the Y(Co1−xNix)2 intermetallic series was measured in a temperature range of 15-1100 K. The parameters involved in the dependence of resistivity on temperature were determined. Residual, phonon and spin fluctuations resistivity were separated from electrical resistivity using both the Matthiesen formula and the Bloch-Gruneisen formula. The spin fluctuations resistivity of the Y(Co1−xNix)2 series are compared to the mean square amplitudes of spin fluctuations previously calculated by the Linear Muffin Tin Orbital-Tight Binding Approach method for these series in the literature. The contribution of spin fluctuations to total resistivity ρsf is proportional to T2 at low temperatures. The proportionality parameter strongly reduces across the Y(Co1−xNix)2 series.  相似文献   

10.
Crystal structure, thermogravimetry (TG), thermal expansion coefficient (TEC), electrical conductivity and AC impedance of (Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ (BSLCF; 0.05?x?0.20) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. A single cubic pervoskite was observed by X-ray diffraction (XRD). The TEC of BSLCF was increasing slightly with the increasing content of La, and all the compounds showed abnormal expansion at high temperature. Proved by the TG result, it was associated with the loss of lattice oxygen. The electrical conductivity, which is the main defect of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ (BSCF), was improved by La doping, e.g., the compound of x=0.20 demonstrated a conductivity of σ=376 S cm−1 at 392 °C. The increase of electrical conductivity resulted from the increased concentration of charge carrier induced by La doping. In addition, the AC impedance revealed the better electrochemical performance of BSLCF. For example, at 500 °C, the sample with composition x=0.15 yielded the resistance values of 2.12 Ω cm2, which was only 46% of BSCF.  相似文献   

11.
BiFe1−xNixO3 ceramic powders with x up to 0.10 have been prepared by the sol-gel technique. The band gap of BiFeO3 is 2.23 eV, and decreases to 2.09 eV for BiFe0.95Ni0.05O3 and BiFe0.90Ni0.10O3. The Mössbauer spectra show sextet at room temperature, indicating the magnetic ordering and the presence of only Fe3+ ions. Superparamagnetism with blocking temperature of 31 K for BiFe0.95Ni0.05O3 and 100 K for BiFe0.90Ni0.10O3 was observed. Enhanced magnetization at room temperature have been observed (1.0 emu/g for BiFe0.95Ni0.05O3 and 2.9 emu/g for BiFe0.90Ni0.10O3 under magnetic field of 10,000 Oe), which is one order larger than that of BiFeO3 (0.1 emu/g under magnetic field of 10,000 Oe). The enhanced magnetization was attributed to the suppression of the cycloidal spin structure by Ni3+ substitution and the ferrimagnetic interaction between Fe3+ and Ni3+ ions.  相似文献   

12.
The phase structure, microstructure, piezoelectric properties, dielectric characteristic and the ME effect of magnetoelectric Pb[Zr0.23Ti0.36+0.02(Mg1/2W1/2)+0.39(Ni1/3Nb2/3)]O3 (PZT)+xNi0.8Co0.1Cu0.1Fe2O4 (NCCF) composite ceramics were prepared by the conventional solid state reaction method. The structural analysis of both the constituent phases and their composites was carried out by X-ray diffraction, energy dispersive spectrometry and scanning electron microscopy. The results showed cubic spinel structure for ferrite phase and tetragonal perovskite structure for ferroelectric phase. The piezoelectric constant, dielectric constant, Curie temperature, remanent polarization and coercive electric field decreased with increase of ferrite content. The coercive field strength, saturation magnetization and remanent magnetization increased with increasing ferrite content.  相似文献   

13.
Gold-coated nanoparticles of Fe20Ni80 (permalloy) have been synthesized by a microemulsion process. The as-prepared samples consist of ∼5 nm diameter particles of amorphous Fe20Ni80 that are likely encapsulated in B2O3. One or more Fe20Ni80@B2O3 particles are subsequently encapsulated in 8-20 nm gold nanospheres, as determined by TEM and X-ray powder diffraction (XRD) line broadening. The gold shells were found to be under expansive strain. Magnetic data confirm the existence of a superparamagnetic phase with a blocking temperature, TB, of ∼33 K. The saturation magnetization, MS, of the as-prepared, Au-coated sample is ∼65 emu g−1 at 5 K and ∼16 emu g−1 at 300 K. The coercivity, HC, is ∼280 Oe at 5 K.  相似文献   

14.
Polarized neutron reflectometry was used to investigate the amorphous multilayer nanostructures [(Co45Fe45Zr10)x(Al2O3)100−x/a-Si:H]m, whose magnetic properties are dependent on the concentration of the magnetic constituent (x=34, 47 and 60 at%) as well as on the thicknesses of the metal-dielectric (Co45Fe45Zr10)x(Al2O3)100−x and semiconductor a-Si:H layers. The average magnetization of the individual magnetic layer is found to be inhomogeneous with the magnetically active central part and two magnetically dead parts at the interfaces.  相似文献   

15.
We synthesized the Mn-doped Mg(In2−xMnx)O4 oxides with 0.03?x?0.55 using a solid-state reaction method. The X-ray diffraction patterns of the samples were in a good agreement with that of a distorted orthorhombic spinel phase. Their lattice parameters and unit-cell volumes decrease with x due to the substitution of the smaller Mn3+ ions to the larger In3+ ions. The undoped MgIn2O4 oxide presents diamagnetic signals for 5 K?T?300 K. The M(H) at T=300 K reveals a fairly negative-sloped linear relationship. Neither magnetic hysteresis nor saturation behavior was observed in this parent sample. For the Mn-doped samples, however, positive magnetization were observed between 5 and 300 K even if the x value is as low as 0.03. The mass susceptibility enhances with Mn content and it reaches the highest value of 1.4×10−3 emu/g Oe (at T=300 K) at x=0.45. Furthermore, the Mn-doped oxides with x=0.06 and 0.2, respectively, exhibit nonlinear magnetization curves and small hysteretic loops in low magnetic fields. Susceptibilities of the Mn-doped samples are much higher than those of MnO2, Mn2O3 oxides, and Mn metals. These results show that the oxides have potential to be magnetic semiconductors.  相似文献   

16.
Observation of room-temperature ferromagnetism in Fe- and Ni-co-doped In2O3 samples (In0.9Fe0.1−xNix)2O3 (0?x?0.1) prepared by citric acid sol-gel auto-igniting method is reported. All of the samples with intermediate x values are ferromagnetic at room-temperature. The highest saturation magnetization (0.453 μB/Fe+Ni ions) moment is reached in the sample with x=0.04. The highest solubility of Fe and Ni ions in the In2O3 lattice is around 10 and 4 at%, respectively. The 10 at% Fe-doped sample is found to be weakly ferromagnetic, while the 10 at% Ni-doped sample is paramagnetic. Extensive structure including Extended X-ray absorption fine structure (EXAFS), magnetic and magneto-transport including Hall effects studies on the samples indicate the observed ferromagnetism is intrinsic rather than from the secondary impurity phases.  相似文献   

17.
Results of detailed structural, dielectric, magnetic and magnetoelectric studies of (x)PbZr0.52Ti0.48O3-(1−x)Mn0.3Co0.6Zn0.4Fe1.7O4 composites where x=65, 70, 75 and 80 are shown in this work. Manganese substituted cobalt ferrites are known to exhibit large strain derivative (dx/dH) and on the other hand substitution of Zn in pure cobalt ferrite is known to enhance its permeability μ and permittivity ε. The choice of ferrite as Mn, Zn simultaneously substituted cobalt ferrite (MCZFO) is made keeping in view that for good magnetoelectric (ME) voltage coefficient the magnetostrictive constituent phase of the composite should have large strain derivative (dx/dH) along with large permittivity and permeability. It is shown here that although the dielectric transition temperature changes significantly with change in the mole ratio of the two component phases, magnetic transition temperature (much less compared to the bulk cobalt ferrite) is relatively non-responsive to the changing molar ratio of the two component phases. In the vicinity of the magnetic transition temperature we observed an anomaly in tan δ vs. T plots, which indicates a possible magnetoelectric coupling in the samples. Magnetoelectric voltage coefficient (αE) has been measured using static magnetoelectric method. Highest magnetoelectric voltage coefficient (αE=0.312 mV/cmOe) is obtained for sample 80:20 at HDC=1000 Oe.  相似文献   

18.
Zn1−xNixFe2O4 ferrite nanoparticles were prepared by sol–gel auto-combustion and then annealed at 700 °C for 4 h. The results of differential thermal analysis indicate that the thermal decomposition temperature is about 210 °C and Ni–Zn ferrite nanoparticles could be synthesized in the self-propagating combustion process. The microstructure and magnetic properties were investigated by means of X-ray diffraction, scanning electron microscope, and Vibrating sample magnetometer. It is observed that all the spherical nanoparticles with an average grain size of about 35 nm are of pure spinel cubic structure. The crystal lattice constant declines gradually with increasing x from 0.8435 nm (x=0.20) to 0.8352 nm (x=1.00). Different from the composition of Zn0.5Ni0.5Fe2O4 for the bulk, the maximum Ms is found in the composition of Zn0.3Ni0.7Fe2O4 for nanoparticles. The Hc of samples is much larger than the bulk ferrites and increases with the enlarging x. The results of Zn0.3Ni0.7Fe2O4 annealed at different temperatures indicate that the maximum Ms (83.2 emu/g) appears in the sample annealed at 900 °C. The Hc of Zn0.3Ni0.7Fe2O4 firstly increases slightly as the grain size increases, and presents a maximum value of 115 Oe when the grains grow up to about 30 nm, and then declines rapidly with the grains further growing. The critical diameter (under the critical diameter, the grain is of single domain) of Zn0.3Ni0.7Fe2O4 nanoparticles is found to be about 30 nm.  相似文献   

19.
Phases of the composition Ca1−xyMgxCu2+yO3 have been prepared for the first time. The compounds are isostructural with the known end-members CaCu2O3 and MgCu2O3 showing a two-leg spin-ladder-like connection of copper and oxygen atoms within the Cu2O3-layer. Opposite the spin ladders this layer is folded, which results in a long-range antiferromagnetic ordering of these phases. The Néel temperature can be adapted by variation of x in Ca1−xyMgxCu2+yO3 between 24 and 80 K. Several structural features, which influence the magnetic ordering, are discussed.  相似文献   

20.
The magnetic and magnetoresistive properties of spinel-type Zn1−xCoxFe2O4 (x=0, 0.2 and 0.4) ferrites are extensively investigated in this study. A large negative magnetoresistance (MR) effect is observed in Zn1−xCoxFe2O4 ferrites of spinel structure. These materials are either ferrimagnetic or paramagnetic at room temperature, and show a spin-(cluster) glass transition at low temperatures, depending on the chemical compositions. The MR curves as a function of magnetic fields, MR(H), are parabolic at all temperatures for paramagnetic polycrystalline ZnFe2O4. The MR for ZnFe2O4 at 110 K in the presence of 9 T applied magnetic field is 30%. On the other hand, MR(H) are linear for x=0.2 and 0.4 ferrimagnetic Zn1−xCoxFe2O4 samples up to 9 T. The MR effect is independent of the sintering temperatures, and can be explained with the help of the spin-dependent scattering and the Yafet–Kittel angle of Zn1−xCoxFe2O4 mixed ferrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号