首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
Crystal structure, thermogravimetry (TG), thermal expansion coefficient (TEC), electrical conductivity and AC impedance of (Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ (BSLCF; 0.05?x?0.20) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. A single cubic pervoskite was observed by X-ray diffraction (XRD). The TEC of BSLCF was increasing slightly with the increasing content of La, and all the compounds showed abnormal expansion at high temperature. Proved by the TG result, it was associated with the loss of lattice oxygen. The electrical conductivity, which is the main defect of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ (BSCF), was improved by La doping, e.g., the compound of x=0.20 demonstrated a conductivity of σ=376 S cm−1 at 392 °C. The increase of electrical conductivity resulted from the increased concentration of charge carrier induced by La doping. In addition, the AC impedance revealed the better electrochemical performance of BSLCF. For example, at 500 °C, the sample with composition x=0.15 yielded the resistance values of 2.12 Ω cm2, which was only 46% of BSCF.  相似文献   

2.
The polycrystalline samples of Pb(Zr0.65−xMnxTi0.35)O3 (PZMT) (x=0, 0.05, 0.10, 0.15) were prepared by a high-temperature solid-state reaction technique. Detailed studies on the effect of compositional variation of manganese (Mn) on the electrical behavior (complex impedance Z*, complex modulus M*, electrical conductivity and relaxation mechanisms) of the PZMT systems have been carried out by a nondestructive complex impedance spectroscopy (CIS) technique at 400 °C. The Nyquist plots suggest that the grains only are responsible in the conduction mechanism of the materials. The occurrence of single arc in the complex modulus spectrum of all the compositions of Mn confirms the single-phase characteristics of the PZMT compounds, and also confirms the presence of non-Debye type of multiple relaxation in the material.  相似文献   

3.
Transport properties and non-stoichiometry of La1−xCaxW1/6O2 and La1−yW1/6O2 (x=0, 0.005, 0.05; y=0.05, 0.1) have been characterized by means of impedance spectroscopy, the EMF-technique, H+/D+ isotope exchange, and thermogravimetry in the temperature range 300-1200 °C as a function of oxygen partial pressure and water vapor partial pressure. The materials exhibit mixed ionic and electronic conductivities; n- and p-type electronic conduction predominate at high temperatures under reducing and oxidizing conditions, respectively. Protons are the major ionic charge carrier under wet conditions and predominates the conductivity below ∼750 °C. The maximum in proton conductivity is observed for LaW1/6O2 with values reaching 3×10−3 S/cm at approximately 800 °C. The high proton conductivity for the undoped material is explained by assuming interaction between water vapor and intrinsic (anti-Frenkel) oxygen vacancies.  相似文献   

4.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

5.
Low-temperature ordering transitions in polycrystalline high temperature conductors (Dy1 − xCax)2Ti2O7 − δ (x = 0, 0.1) prepared using co-precipitation, mechanical activation and solid-state reactions at 1400 or 1600 °C have been studied by impedance spectroscopy at low frequencies and thermal mechanical analysis (TMA). The dielectric permittivity and loss tangent of the ceramics obtained have been measured as a function of temperature at low frequencies (0.5−500 Hz). The results provide evidence for the relaxation of point defects, most likely oxygen vacancies, at 500−600 °C and an antiferroelectric low-temperature phase transition of the second order, associated with re-arrangement process in the oxygen sublattice of pyrochlore structure. The temperature of the antiferroelectric transition is 700 to 800 °C, depending on the synthesis procedure and ceramic composition. Calcium doping of Dy2Ti2O7 leads to the formation of additional oxygen vacancies and, in the case of the samples prepared via co-precipitation, increases the peaks in permittivity due to the relaxation process and ordering transition by three or six times, respectively.  相似文献   

6.
The effect of γ irradiation on some physical properties of rare earth ferrite of the general formula Li0.5+zCoz YbxFe2.5−2zxO4, (z=0.1, x=0.00, 0.025, 0.050, … , 0.200) is discussed. The temperature dependence of the polarization and resistance is studied in the range (300 K≤T≤700 K) at different frequencies (10 kHz≤f≤1 MHz). The relaxation time and the activation energy have been calculated before and after irradiation with γ rays doses of 1 and 3 Mrad. A comparison was made between the ac resistance before and after irradiation for the samples with (0.0≤x≤0.2). The results after irradiation with 1 Mrad γ rays showed that the resistance at the critical concentration decreases from 800 to 25 kΩ at room temperature. Furthermore, with increasing temperature the resistance ranged from R≈130 kΩ at T≈310 K to R≈0.13 kΩ at T≈640 K. Thus, it is possible to improve the conductivity of this type of rare earth ferrite materials to be used in technological applications at room as well as at high temperature.  相似文献   

7.
The effect of post sintering annealing on the dielectric response of (Pb1−xBax)(Yb0.5Ta0.5)O3 ceramics in the diffuse phase transition range (x=0.2) has been investigated. The samples are prepared by conventional solid-state reaction method. The samples are sintered at 1300 °C for 2 h and annealed at different temperatures (800, 900 and 1000 °C) for 8 h and at 800 °C for different time durations (8, 12 and 24 h). A significant change in the dielectric response has been observed in all the samples. The dielectric constant increases remarkably and the dielectric loss tangent decreases. The dielectric peaks of the annealed samples are observed to be more diffused with noticeable frequency dispersion compared to the as sintered sample.  相似文献   

8.
A polycrystalline sample, KCa2V5O15, with tungsten bronze structure was prepared by a mixed-oxide method at low temperature (i.e., at 630 °C). A preliminary structural analysis of the compound showed an orthorhombic crystal structure at room temperature. Surface morphology of the compound was studied by scanning electron microscopy (SEM). Two dielectric anomalies at 131 and 275 °C were observed in the temperature dependency of dielectric response at various frequencies, which may be attributed to the ferroelastic-ferroelectric and ferroelectric-paraelectric transitions, respectively. The nature of variation of the electrical conductivity, and value of activation energy of different temperature regions, suggest that the conduction process is of mixed-type (i.e., ionic-polaronic and space charge generated from the oxygen ion vacancies). The impedance plots showed only bulk contributions, and non-Debye type of relaxation process occurs in the material. A hopping mechanism of electrical transport processes in the system is evident from the modulus analysis. The activation energy of the compound (calculated both from loss and modulus spectrum) is same, and hence the relaxation process may be attributed to the same type of charge carriers.  相似文献   

9.
Polycrystalline tungsten oxide (WO3) pellets were prepared by conventional ceramic processing technology. The ac small-signal electrical data acquired in the frequency (f) range 100 Hz≤f≤1 MHz at temperature (T) ranging the 31-100 °C revealed distinct semicircular relaxation in the impedance plane. This relaxation indicates device behavior originating from the grain boundaries. The lumped grain impedance associated with the device action remained too small to detect when the large resistance scale is realized. The semicircular relaxation is thermally activated indicating 0.58 eV as the activation energy for the relaxation time.  相似文献   

10.
The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin–spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325–376 K and the frequency range from 10−2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.  相似文献   

11.
Ca1−xBixNb1−xCrxO3 (x=0.01-0.5) ceramic powders were synthesized using the sol-gel process. The single-phase solids can be presented at x=0.01 and 0.03. The coexistence of orthorhombic perovskite and the secondary phase of BiCrO3 was verified, as presented for x=0.05-0.5. Grains with a micro-cube topography were obtained for x=0.3-0.5. The average grain size is about 0.4 and 1.1 μm for x=0.3 and 0.5, respectively. The highest dielectric constant peak was measured at around 55 °C for x=0.5 and at 75 °C for x=0.3. The high dielectric constant was caused by the formation of barrier layers at the interface of the bi-phase mixed ceramics. Space charge polarization contributed to the observed behavior.  相似文献   

12.
Na1−xLixNbO3 ceramics with composition 0.05≤x≤0.30 were prepared by solid-state reaction method and sintered in the temperature range 1100-1150 °C. These ceramics were characterised by X-ray diffraction as well as dielectric permittivity measurements and Raman spectroscopy. Dielectric properties of ceramics belonging to the whole composition domain were investigated in a broad range of temperatures from 300 to 750 K and frequencies from 0.1 to 200 kHz. The Rietveld refinement powder X-ray diffraction analysis showed that these ceramics have a single phase of perovskite structure with orthorhombic symmetry for x≤0.15 and two phases coexistence of rhombohedral and orthorhombic above x=0.20. The evolution of the permittivity as a function of temperature and frequency showed that these ceramics Na1−xLixNbO3 with composition 0.05≤x≤0.15 present the classical ferroelectric character and the phase transition temperature TC increases as x content increases. The polarisation state was checked by pyroelectric and piezoelectric measurements. For x=0.05, the piezoelectric coefficient d31 is of 2pC/N. The evolution of the Raman spectra was studied as a function of temperatures and compositions. The results of the Raman spectroscopy study confirm our dielectric measurements, and they indicate clearly the transition from the polar ferroelectric phase to the non-polar paraelectric one.  相似文献   

13.
An apparatus for measuring the complex impedance of samples with high impedances is described. Complex impedance spectra were collected from a range of borosilicate glasses of composition (B2O3)4(Li2O)(LiBr)x(NaBr)1−x at pressures and temperatures ranging from 1 to 5 GPa and 350 to 450 °C, respectively. These data were used to determine AC conductivities and activation energies in order to test the Modified Random Network model of glass structure. Our results are in line with the predictions of this theory.  相似文献   

14.
Optical observation under the polarizing microscope and DSC measurements on K3H(SeO4)2 single crystal have been carried out in the temperature range 25-200 °C. It reveals a high-temperature structural phase transition at around 110 °C. The crystal system transformed from monoclinic to trigonal. Electrical impedance measurements of K3H(SeO4)2 were performed as a function of both temperature and frequency. The electrical conduction and dielectric relaxation have been studied. The temperature dependence of electrical conductivity indicates that the sample crystal became a fast ionic conductor in the high-temperature phase. The frequency dependence of conductivity follows the Jonscher's universal dynamic law with the relation σ(ω)=σ(0)+n, where ω is the frequency of the AC field, and n is the exponent. The obtained n values decrease from 1.2 to 0.1 from the room temperature phase to fast ionic phase. The high ionic conductivity in the high-temperature phase is explained by the dynamical disordering of protons between the neighboring SeO4 groups, which provide more vacant sites in the crystal.  相似文献   

15.
The magnetic properties of four compounds in the series CaBaCo4−xyZnxAlyO7 (x=0,1,2, y=0,1) were investigated. Using AC-susceptibility and DC-magnetometry, magnetic transitions (Tfs) were found for all four compositions in the range 50-3 K. The data from the AC measurements proved to be frequency dependent: Tf increases with higher frequencies. An energy-loss in the magnetic coupling, indicated as contributions in the imaginary part of the magnetic susceptibility (χ″), was seen for every compound and its maximum appeared just below the maximum χ′. Modelling the data with Arrhenius-, Vogel-Fulcher-, and the power-law made it possible to relate the four compounds to spin-glass materials. The Casimir-du Pré relation was used to extract average relaxation times at Tf. The DC magnetisations clearly show differences between field-cooled and zero-field-cooled measurements. None of the compounds exhibit any metamagnetic properties up to 8 T. A new method is presented to calculate the saturation fields using DC data. Relaxation measurements on three compounds indicate that the systems relax very fast, in contrast to spin-glasses. Aging does not affect the fast relaxations. The compounds are interpreted as disordered anti-ferromagnets with spin-glass features.  相似文献   

16.
The Ce6−xYxMoO15−δ solid solution with fluorite-related structure have been characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), IR, Raman, scanning electric microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. The electric conductivity of samples is investigated by Ac impedance spectroscopy. An essentially pure oxide-ion conductivity of the oxygen-deficiency was observed in pure argon, oxygen and air. The highest oxygen-ion conductivity was found in Ce5.5Y0.5MoO15−δ ranging from 5.9×10−5 (S cm−1) at 300 °C to 1.3×10−2 (S cm−1) at 650 °C, respectively. The oxide-ion conductivities remained stable over 80 h-long test at 800 °C. These properties suggested that significant oxide-ionic conductivity exists in these materials at moderately elevated temperatures.  相似文献   

17.
In this work we present the results obtained from the luminescence spectra and X-ray diffraction as well as transmission electron microscopy, at room temperature on crystals of NaCl1−xNaBrx:MnCl2:0.3% (x=0.00, 0.05, 0.25, and 0.50). The results suggest the existence of structures between the crystal planes (1 1 1) and (2 0 0), which may be associated with different types of Mn2+ arrangements, such as dipole complexes, octahedral and rhombohedral structures as well as other possible nanostructures that include mixtures of bromine/chlorine ions. These are responsible for the emission spectra of “as grown” crystals consisting of maxima around 500 nm and 600 nm. The green emission has been usually attributed to rhombohedral/tetrahedral symmetry sites; the present results point out that this is due to Mn–Cl/Br nanostructures with rhombohedral structure. On the other hand when the crystals are thermally quenched from 500 °C to room temperature the structures previously detected present changes. Only a red band appears around 620 nm if the samples are later annealed at 80 °C.  相似文献   

18.
Nanocrystalline Ca1−xHoxMnO3−δ (0?x?0.3) manganites were synthesized as phase-pure by a simple and instantaneous solution autogel combustion method, which is a low temperature initiated synthetic route to obtain fine grain size. All the samples, heated at 800 °C for 18 h, can be produced as phase-pure; the polycrystalline powders are homogeneous and possess ultrafine particle size. The holmium-doped calcium manganites retain the orthorhombic phase of the undoped sample. The scanning electron microscope (SEM) images revealed that the combustion-derived compounds exhibit particle size that decreases with holmium content from 300 to 80 nm. All manganites show two active IR vibrational modes near 400 and 600 cm−1. The high temperature dependence of resistivity was measured using a standard four-probe method in the range 25-600 °C. All the samples exhibit semiconductor behaviour and holmium induces a marked decrease in the electrical resistivity when compared with the parent CaMnO3. The results can be well attributed to the Mn4+/Mn3+ ratio and to the particle grain size.  相似文献   

19.
A series of the SmFeAsO1−xFx and GdFeAsO1−xFx (x=0.05, 0.1, 0.15, 0.2, 0.25) samples have been prepared using nano-scaled ReF3 as the fluorine resource at a relatively low temperature. The samples have been sintered at 1100 and 1120 °C for SmFeAsO1−xFx and GdFeAsO1−xFx, respectively. These temperatures are at least 50-60° lower than other previous reports. All of the so-prepared samples possess a tetragonal ZrCuSiAs-type structure. Dramatically supression of the lattice parameters and increase in Tc proved that this low temperature process was more effective to introduce fluorine into REFeAsO. Superconducting transition appeared at 39.5 K for SmFeAsO1−xFx with x=0.05 and at 22 K for GdFeAsO1−xFx with x=0.1. The highest Tc was detected to be 54 K in SmFeAsO0.8F0.2 and 40.2 K in GdFeAsO0.75F0.25. The use of the nano-scaled ReF3 compounds has improved the efficiency of the present low temperature method in synthesizing the fluorine-doped iron-based superconductors.  相似文献   

20.
The effects of K doping in the A-site on the structural, magnetic and magnetocaloric properties in La0.65Ca0.35−xKxMnO3 (0?x?0.2) powder samples have been investigated. Our samples have been synthesized using the solid-state reaction method at high temperature. The parent compound La0.65Ca0.35MnO3 is an orthorhombic (Pbnm space group) ferromagnet with a Curie temperature TC of 248 K. X-ray diffraction analysis using the Rietveld refinement show that all our synthesized samples are single phase and crystallize in the orthorhombic structure with Pbnm space group for x?0.1 and in the rhombohedral system with R3¯c space group for x=0.2 while La0.65Ca0.2K0.15MnO3 sample exhibits both phases with different proportions. Magnetization measurements versus temperature in a magnetic applied field of 50 mT indicate that all our investigated samples display a paramagnetic-ferromagnetic transition with decreasing temperature. Potassium doping leads to an enhancement in the strength of the ferromagnetic double-exchange interaction between Mn ions, and makes the system ferromagnetic at room temperature. Arrott plots show that all our samples exhibit a second-order magnetic-phase transition. The value of the critical exponent, associated with the spontaneous magnetization, decreases from 0.37 for x=0.05 to 0.3 for x=0.2. A large magnetocaloric effect (MCE) has been observed in all samples, the value of the maximum entropy change, |ΔSm|max, increases from 1.8 J/kg K for x=0.05 to 3.18 J/kg K for x=0.2 under a magnetic field change of 2 T. For x=0.15, the temperature dependence of |ΔSm| presents two maxima which may arise from structural inhomogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号