首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The hydrophilic characteristics of zinc oxide combined with the electronic properties of this width band gap semi-conductor were used to produce transparent, anti fog and photocatalytic porous films by using a simple sol?Cgel dip-coating process. The observed values of contact angles (near to 10°) and calculated spreading coefficients (close to zero) indicate that sol?Cgel dip-coated ZnO porous films show excellent wettability. The photocatalytic behavior of these films measured from methylene blue degradation is dependent on the film thickness in agreement with wettability results; as the film thickness increases from 0.1?±?0.05 to 0.5?±?0.05 the photocatalytic reaction rate constant increases from 0.9?×?10?3 to 5.5?×?10?3 min?1.  相似文献   

2.
Highly crystalline ZnO–SiO2 films obtained by a sol–gel method at different ZnO contents were deposited on silicon substrate (P(100)) using spin coating process. The XRD results revealed that the strong ZnO(100) peak is grown with highly c-axis oriented film and the crystallinity is progressively improved with increasing ZnO contents. SEM micrographs of the films deposited on silicon substrate show a homogeneous and uniformity structure at different ZnO content. The prepared ZnO–SiO2 films are compared with either a film prepared from a commercial photocatalysts Hombikat UV-100 or Pilkington Glass Activ? by the determination of their photonic efficiencies for degradation of methylene blue. The photocatalytic efficiency of the 10 wt% ZnO–SiO2 film was found to be about four times higher than film prepared from UV-100 or Pilkington Glass Activ?. The photocatalytic efficiencies of ZnO–SiO2 films are increased with increasing ZnO content from 1 wt% to 10 wt% ZnO and then decreased at 15 wt% ZnO. The order of photocatalytic efficiencies of ZnO–SiO2 films at different ZnO content and commercial photocatalysts after 6 h illumination were as following: 10 wt% ZnO > 15 wt% ZnO > 1 wt% ZnO > as-prepared 10 wt% ZnO–SiO2 film > UV-100 > Pilkington Glass Activ?, which suggested that the ZnO–SiO2 films are photoactive than commercial photocatalysts. The improved efficiency and potentially the low-cost synthesis suggest that this material might be practically useful as a photocatalyst film.  相似文献   

3.
In this paper, we reports on the structural and optical properties of Zn1?x?yBexMgyO thin films prepared by sol–gel method, which are new materials for optoelectronic and ultraviolet-light-emitting devices. The crystal structure and core level spectra of these films are studied by X-ray diffraction and X-ray photoelectron spectroscopy. Surface morphology of the films is analyzed by scanning electron microscope images and the surface is composed of spherical shaped grains. Micro-photoluminescence shows a near edge band emission and the peak values tuned from 3.26 eV for the undoped to 3.4 eV for the doped ZnO film. Near infrared emission is observed in the region 1.64–1.67 eV for pure and co-doped ZnO films. In micro-Raman spectra, multiple-order Raman bands originating from ZnO-like longitudinal optical (LO) phonons are observed. A Raman shift of about 5–18 cm?1 is observed for the first-order LO phonon. A comparative study was made on Raman band for BeZnO, MgZnO and BeMgZnO nanocrystals with the LO phonon band of bulk ZnO. The ultraviolet resonant Raman excitation at room temperature shows multi-phonon LO modes up to the fourth order. Deformation energy of all the films is calculated and BeMgZnO film has the minimum deformation energy.  相似文献   

4.
Nano crystalline cesium (Cs) doped ZnO thin films were deposited on glass substrate by sol gel spin coating method with 1–3 mol.% doping concentration and different annealing temperatures. The deposited films were characterized by X-ray diffraction (XRD), Hall Effect, Photoluminescence (PL) and UV–Visible studies. XRD measurements reveal that all the samples abound in the wurtzite structure with polycrystalline nature. An increase in crystalline size from 19.60 to 44.54 nm is observed with the increase of doping concentration. Electrical conductivity of Cs doped ZnO films were observed from Hall effect measurements and the maximum carrier concentration obtained is 7.35 × 1018 cm?3. The near band emission (384 nm) peak intensity increases with the increase of Cs doping concentration and a maximum intensity 55,280 was observed for CZ3 film from PL spectrum. Also a low energy near infrared (NIR) emission peak centered at 1.62 eV appears for the Cs doped ZnO films. The average transmission of CZ film is 88 % and the absorption edge is red shifted with the increase of Cs doping concentration and also the optical conductivity increases in the UV region.  相似文献   

5.
Rare earth element (i.e.) europium co-doped aluminum zinc oxide (Eu:AZO) thin films were deposited on microscope glass slides by nebulizer spray pyrolysis with different Eu-doping concentrations (0, 0.5, 1, and 1.5%). The deposited films were investigated using X-ray diffraction, AFM, EDAX, FT-Raman, UV–visible, PL, and Hall effect measurements. X-ray confirmed the incorporation of aluminum and europium ions into the ZnO structure. All films have polycrystalline nature with hexagonal wurtzite structure at (002) direction. Topological depictions exhibited minimum surface roughness and low film thickness for pristine AZO thin film. EDAX study authorizes the existence of Zn, O, Al, and Eu in Eu: AZO thin films. Raman spectra exhibited the characteristic of ZnO-wurtzite structure (E2-high) mode at 447?cm?1. The deposited film showed high optical transmittance of ~90% in visible region, and the direct energy gap was around 3.30?eV for pristine AZO thin film. The PL spectra emitted a powerful UV emission situated at 388?nm, and it indicates that the film has good optical quality. The obtained large carrier concentration and less resistivity values are 4.42?×?1021?cm?3 and 3.95?×?10?4?Ω?cm, respectively, for 1.5% Eu-doped AZO thin film. The calculated figure of merit value is 17.29?×?10?3 (Ω/sq)?1, which is more suitable for the optoelectronic device.  相似文献   

6.
Among the various semiconducting metal oxide materials, ZnO thin films are highly attractive in the development of materials area. In this paper, Al-doped ZnO thin films were prepared by sol–gel dipping and drawing technology and their composition, structure and optical–electrical properties were investigated. XRD results shows that the Al-doped ZnO thin film is of polycrystalline hexagonal wurtzite structure, and the (002) face of the thin film has the strongest orientation at the annealing temperature of 550 °C. The surface resistance of Al-doped ZnO thin film firstly drops and then increases with the increase in annealing temperature. Al doping concentration is also an important factor for improving the conductivity of modified ZnO thin films, and the surface resistance has the tendency to drop at first and then to increase when the Al concentration is increasing. The surface resistance of modified ZnO thin films drops to the lowest point of 139 KΩ sq?1 when the Al concentration is 1.6 at% and the annealing temperature is 500 °C. The light transmission measurements show that the doping concentration has little influence on light transmittance. The transmittance at the visible region of films is all over 80 %, and the highest value is up to 91 %.  相似文献   

7.
Ga-doped ZnO and (Ga?+?Al) co-doped ZnO thin films were deposited on glass substrates by radio frequency magnetron sputtering for three distances d between a substrate–target. The influence of the distance between substrate–target upon structure, microstructure, vibrational properties, and optical band gap of the thin films was analyzed by X-ray diffraction, atomic force microscopy (AFM), Raman spectroscopy, and optical transmission measurements. The diffraction patterns revealed that the ZnO film crystallites are preferentially oriented with the (002) planes parallel to the substrate surface. AFM images show a smooth and uniform surface as well as a high compact structure. The Raman results reveal that the co-doping with Al?+?Ga introduces 2B1(low) band and leads to the increase of intensity for longitudinal-optic’s band. In the visible region, the average value of the transmittance was above 80%.  相似文献   

8.
In this study, preparation of Sn and Nb co-doped TiO2 dip-coated thin films on glazed porcelain substrates via sol–gel process have been investigated. The effects of co-doping content on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD), field emission SEM (FE-SEM), high resolution transmission electron microscopy (HR-TEM), and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy (XPS). XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania Rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The prepared co-doped TiO2 photo-catalyst films showed optical absorption edge in the visible light area and exhibited excellent photo-catalytic ability for degradation of methylene blue (MB) solution under solar irradiation. Comparison with undoped and Sn or Nb-doped TiO2, codoped TiO2 shows an obviously higher catalytic activity under solar irradiation.  相似文献   

9.
Thin films of Al doped ZnO (Al:ZnO) were deposited on two substrates (Si and glass) at room temperature and 300°C using DC magnetron sputtering. These films were bombarded with 50 keV H+ beam at several fluences. The pristine and ion beam irradiated films were analysed by X‐ray diffraction, Raman spectroscopy, scanning electron microscopy, and UV‐Vis spectroscopy. The X‐ray diffraction analysis, Hall measurements, Raman and UV‐Vis spectroscopy confirm that the structural and transport properties of Al:ZnO films do not change substantially with beam irradiation at chosen fluences. However, in comparison to film deposited at room temperature, the Al:ZnO thin film deposited at 300°C shows increased transmittance (from 70% to approximately 90%) with ion beam irradiation at highest fluence. The studies of surface morphology by scanning electron microscopy reveal that the ion irradiation yields smoothening of the films, which also increases with ion fluences. The films deposited at elevated temperature are smoother than those deposited at room temperature. In the paper, we discuss the interaction of 50 keV H+ ions with Al:ZnO films in terms of radiation stability in devices.  相似文献   

10.
Nanoparticles, microsphere, hedgehog sphere-like and flower-like ZnO:Fe photocatalysts were prepared by the hydrothermal method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet/visible absorption spectra (UV?CVis). The results show that the ZnO:Fe photocatalysts with different 3D morphologies are a hexagonal wurtzite structure with space group of p63mc. The pH value of the precursor has a great influence on various morphologies of ZnO:Fe photocatalysts. The flower-like and hedgehog sphere-like ZnO:Fe photocatalysts exhibit the high solar photocatalytic behavior on methylene blue (MB). The ZnO:Fe order of photocatalytic activity is as follows: flower?>?hedgehog sphere?>?microsphere?>?nanoparticle. The flower-like ZnO:Fe is optimal, which exhibits the highest degradation rate of 98% for light time of 5?h.  相似文献   

11.
The microstructure, optical, photoluminescence and electrical properties of ZnO based films deposited onto FTO glass substrates by ultrasonic spray pyrolysis have been investigated. For comparison and a better understanding of physical properties of indium- and aluminum-doped ZnO and undoped ZnO thin films, X-ray diffraction analysis, photoluminescence spectra, optical, SEM texture and electrical conductivity analyses were performed. The AZO and IZO films exhibit the nanofiber structure with diameters 260 and 400 nm. X-ray diffraction showed all samples to be polycrystalline with hexagonal ZnO. The optical band gaps of the films were varied by Al and In dopants. The photoluminescence spectra of the films show a weak broad in the visible range and shifted to green emission for indium doping and to the green blue emission for aluminum as dopant. The width of the PL spectra for aluminum-doped films is too large compared to those of the indium-doped ones. The electrical conductivity of the ZnO film changes with Al and In dopants. The position of donor levels changes with In and Al dopants and approaches the conduction band level with the metal dopants. The obtained results suggest that the metal doping has a clear effect upon the growth, optical, photoluminescence and electrical conductivity properties of the ZnO films.  相似文献   

12.
ZnO co-doped with 2 at.% Sm and different Li concentration (0–7 at.%) powders were fabricated by the sol–gel method with 700 °C annealing. The effect of Li doping concentration on the structure and photoluminescence (PL) of ZnO powders doped with 2 at.% Sm was investigated. Based on the balance of structure and valence, with the help of Li doping (1, 2 at.%) into ZnO powders doped with 2 at.% Sm, Sm3+ ions enter ZnO crystal lattice and induce the characteristic Sm3+ emission peaks by the ultra-violet (UV) excitation (278 nm). Especially, when the Li doping concentration is 2 at.%, the sample has the most efficient Sm characteristic emission line. However, Li will hinder the substitution of zinc location by Sm3+ when the Li doping concentration is above 3 at.%, which results in the disappearance of the characteristic samarium emission lines.  相似文献   

13.
We prepared Zn–Al layered double hydroxide (LDH) thin films intercalated with sulfonated 1,3′,3′-trimethyl-6-nitrospiro[2H-chromene-2,2′-indoline] anions (SP-SO3 ?) by immersion of sol–gel derived amorphous Al2O3–ZnO thin films in hot water containing SP-SO3H. Extended interlayer spacing, in comparison to the Zn–Al LDH with carbonate anions, was observed after immersion in distilled water containing SP-SO3H at 60 °C for 30 min, indicating that we formed Zn–Al LDH films with SP-SO3 ? directly on glass substrates. The merocyanine form of SP-SO3 ? was shown by UV spectra to have stabilized in the hydroxide layers of LDH.  相似文献   

14.
We report the influence of 100 keV H+ ion beam irradiation on the surface morphology, crystalline structure, and transport properties of as‐deposited Al‐doped ZnO (Al:ZnO) thin films. The films were deposited on silicon (Si) substrate by using DC sputtering technique. The ion irradiation was carried out at various fluences ranging from 1.0 × 1012 to 3.0 × 1014 ions/cm2. The virgin and ion‐irradiated films were characterized by X‐ray diffraction, Raman spectroscopy, atomic force microscopy, and Hall probe measurements. Using X‐ray diffraction spectra, 5 points Williamson‐Hall plots were drawn to deduce the crystallite site and strain in Al:ZnO films. The analysis of the measurements shows that the films are almost radiation resistant in the structural deformation under chosen irradiation conditions. With beam irradiation, the transport properties of the films are also preserved (do not vary orders of magnitude). However, the surface roughness and the crystallite size, which are crucial parameters of the ZnO film as a gas sensor, are at variation with the ion fluence. As ion fluence increases, the root‐mean‐square surface roughness oscillates and the surface undergoes for smoothening with irradiation at chosen highest fluence. The crystallite size decreases initially, increases for intermediate fluences, and drops almost to the value of the pristine film at highest fluence. In the paper, these interesting experimental results are discussed in correlations with ion‐matter interactions especially energy losses by the ion beam in the material.  相似文献   

15.
1-propanolic particulate ZnO nanocolloids were co-doped with ErIII ions and various silanes prior to coating. The resulting functionalized sols and sintered films were examined by UV/Vis-, FTIR- and time-resolved NIR-fluorescence spectroscopy. As a result, methyl- and phenyl triethoxysilanes (MTEOS, PTEOS) were found to block the slow ageing of the ZnO sols while the higher substituted silanes did not. Furthermore, film samples prepared from TEOS co-doped ErIII/ZnO sols and sintered at 400°C showed no fluorescence whereas PTEOS co-doping allows to detect the complex NIR-ErIII-fluorescence decay. In the last part of this contribution, the effect of thermal ZnO particle healing on the subsequent co-dopings and NIR-fluorescence dynamics will be discussed. Briefly, with increasing healing temperature the life time of the 1.54 m fluorescence decreases. Interestingly, in ZnO sols healed at 170°C, the erbium acetate precursor is no more soluble which means that the ZnO nanocrystals could not be doped either.  相似文献   

16.
A method was established for the preconcentration of trace concentrations of Er(III) ion using activated carbon modified with benzoyl hydrazine. Parameters affecting solid-phase extraction such as pH value, shaking time, flow rate, sample volume were systematically studied. At a pH of 3.0, the maximum static adsorption capacity of the sorbent is 59.8?mg?g?1 for Er(III), and the time for quantitative adsorption (>95%) is as short as 2?min. The adsorbed Er(III) was quantitatively eluted with 2?mL of 1.0?M hydrochloric acid and then determined by inductively coupled plasma optical emission spectrometry. The limit of detection (3??) is 73?ng?g?1, and the relative standard deviation is <2.0% (n?=?8). The method was validated by analyzing certified reference materials and successfully applied to the determination of trace Er(III) in environmental samples.
Figure
Activated carbon modified with benzoyl hydrazine (AC-BH) has been used for preconcentration of Er(III) ion. Parameters affecting solid-phase extraction were systematically studied. The important characteristics of AC-BH are its excellent adsorptive selectivity towards Er(III) over other ions, short extraction time, high adsorption capacity and high enrichment factor.  相似文献   

17.
An organically modified sol‐gel electrode using 3‐aminopropyltrimethoxy silane for covalent immobilization of a redox mediator namely toluidine blue has been reported. Cyclic voltammetric characterization of the modified electrode in the potential range of 0.2 V to ?0.6 V exhibited stable voltammetric behavior in aqueous supporting electrolyte with a formal potential of ?0.265 V vs. SCE, corresponding to immobilized toluidine blue. The electrocatalytic activity of the modified electrode when tested towards nitrite ion exhibited a favorable response with the electrocatalytic reduction of nitrite occurring at a reduced potential of ?0.34 V. A good linear working range from 2.94×10?6 M to 2.11×10?3 M with a detection limit of 1.76×10?6 M and quantification limit of 5.87×10?6 M was obtained for nitrite determination. The stable and quick response (4 s) of the modified electrode towards nitrite under hydrodynamic conditions shows the feasibility of using the present sensor in flow systems. Significant improvements in the operational stability by overcoming the leachability problem and repeatability with a relative standard deviation of 1.8% of the TB thin film sensor have been obtained by the strategy of immobilization of the mediator in the sol‐gel matrix.  相似文献   

18.
《Comptes Rendus Chimie》2019,22(5):393-405
In this study, TiO2–ZnO nanostructured films prepared from different Ti/water mole ratios were deposited on glass plates by a sol–gel dip-coating method. The structural and surface properties, adherence, and photoactivity of synthesized TiO2–ZnO coatings in methylene blue degradation were investigated. Among the as-prepared TiO2–ZnO coatings from sols with different Ti/water mole ratios (1, 0.66, 0.5, and 0.4), the highest sol concentration (Ti/water mole ratio of 1) showed the highest methylene blue photodegradation of almost 80% after 400 min of UV irradiation. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray (EDX), and UV-vis diffuse reflectance spectra (DRS) confirmed that at high sol concentrations (Ti/water mole ratios of 1 and 0.66), a mixed phase of anatase and rutile is formed, whereas at a Ti/water mole ratio of 0.5, just pure rutile is formed. In detail, decreasing the sol concentration increases the cracks, degree of agglomeration, and the thickness of coatings. UV-vis DRS studies also confirm that decreasing the sol concentration in synthesized TiO2–ZnO films leads to a shift in the absorption region of the coating to the UV region. Moreover, decreasing the sol concentration declines the coating adherence onto glass plates. TEM images of the TiO2–ZnO coating synthesized from sol with a Ti/water mole ratio of 1 revealed the formation of ZnO nanorods around a spherical TiO2, which indicates the presence of strong interaction between TiO2 and ZnO nanoparticles. The TiO2–ZnO coating synthesized from sol with a Ti/water mole ratio of 1 was then evaluated at different methylene blue concentrations, pH values, and number of coatings. After five consecutive runs, no significant decrease in the photodegradation efficiency was observed. Scanning electron microscopy (SEM) picture of used coating showed a smooth and stable layer without any detachment. Thermogravimetric analysis (TG) and sonication test confirmed thermal and mechanical stabilities of this coating as well.  相似文献   

19.
Erbium doped silica-titania planar waveguides, co-doped with ytterbium and aluminum, have been prepared by sol-gel processing, using multilayer spin-coating deposition on silicon or silica glass substrates. The Er3+ doping level varied between 0 and 2 at.%, while Yb3+ varied from 0 to 3 at.%. Aluminum was incorporated up to 15 at.% Al and it was found to have no significant effect on the refractive index of the silica-titania (80 : 20 mol%) matrix. The Er3+ fluorescence emission was flat within ±0.5 dB, between 1520 and 1560 nm. The corresponding 4I13/2 metastable level lifetime was found to decrease from 6.1 to 3.5 ms, as the Er concentration increased from 0.1 to 0.5 at.%, for films co-doped with 0.5 at.% Yb and 10 at.% Al and the fluorescence decay was essentially single exponential below a Er quenching concentration of 0.5 at.% (1.1 × 1020 ions/cm3). The lifetime appears to be limited by Er-Er interactions at higher rare-earth ion concentrations and by residual OH species in the sol-gel derived waveguides. Vacuum heat treatment at a temperature near 570°C was somewhat effective in increasing the Er fluorescence lifetime, whereas reactive atmosphere processing in CCl4 or Cl2 at a similar temperature appeared to be less effective.  相似文献   

20.
Zinc oxide nanoparticles were synthesized via the sol?Cgel method. The structures of the obtained nanoparticles were investigated by X-ray diffraction. The photocatalytic degradation of chlorophenolic compounds, namely 2-chlorophenol (CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP), was carried out using ZnO nanoparticles under solar intensity of 20?C26?W?m?2. The photocatalytic degradation efficiency of TCP?<?DCP?<?CP was found. The adsorption energies of the chlorophenolic compounds with ZnO catalyst were calculated from quantum chemical molecular dynamic model and found to increase in the order of TCP?<?DCP?<?CP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号