首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We explore an approach to possibilistic fuzzy clustering that avoids a severe drawback of the conventional approach, namely that the objective function is truly minimized only if all cluster centers are identical. Our approach is based on the idea that this undesired property can be avoided if we introduce a mutual repulsion of the clusters, so that they are forced away from each other. We develop this approach for the possibilistic fuzzy c-means algorithm and the Gustafson–Kessel algorithm. In our experiments we found that in this way we can combine the partitioning property of the probabilistic fuzzy c-means algorithm with the advantages of a possibilistic approach w.r.t. the interpretation of the membership degrees.  相似文献   

2.
Medoid-based fuzzy clustering generates clusters of objects based on relational data, which records pairwise similarities or dissimilarities among objects. Compared with single-medoid based approaches, our recently proposed fuzzy clustering with multiple-weighted medoids has shown superior performance in clustering via experimental study. In this paper, we present a new version of fuzzy relational clustering in this family called fuzzy clustering with multi-medoids (FMMdd). Based on the new objective function of FMMdd, update equations can be derived more conveniently. Moreover, a unified view of FMMdd and two existing fuzzy relational approaches fuzzy c-medoids (FCMdd) and assignment-prototype (A-P) can be established, which allows us to conduct further analytical study to investigate the effectiveness and feasibility of the proposed approach as well as the limitations of existing ones. The robustness of FMMdd is also investigated. Our theoretical and numerical studies show that the proposed approach produces good quality of clusters with rich cluster-based information and it is less sensitive to noise.  相似文献   

3.
The partitioning clustering is a technique to classify n objects into k disjoint clusters, and has been developed for years and widely used in many applications. In this paper, a new overlapping cluster algorithm is defined. It differs from traditional clustering algorithms in three respects. First, the new clustering is overlapping, because clusters are allowed to overlap with one another. Second, the clustering is non-exhaustive, because an object is permitted to belong to no cluster. Third, the goals considered in this research are the maximization of the average number of objects contained in a cluster and the maximization of the distances among cluster centers, while the goals in previous research are the maximization of the similarities of objects in the same clusters and the minimization of the similarities of objects in different clusters. Furthermore, the new clustering is also different from the traditional fuzzy clustering, because the object–cluster relationship in the new clustering is represented by a crisp value rather than that represented by using a fuzzy membership degree. Accordingly, a new overlapping partitioning cluster (OPC) algorithm is proposed to provide overlapping and non-exhaustive clustering of objects. Finally, several simulation and real world data sets are used to evaluate the effectiveness and the efficiency of the OPC algorithm, and the outcomes indicate that the algorithm can generate satisfactory clustering results.  相似文献   

4.
土壤是一个多性状的连续体,其分类的首选方法是模糊聚类分析.但是模糊聚类分析中现有的基于模糊等价关系的动态聚类法和模糊c-均值法各有利弊,采用其中一种方法聚类肯定存在不足.为此集成两种聚类方法的优点,避其缺点,提出了用基于模糊等价关系的动态聚类方法和方差分析方法确定聚类数目和初始聚类中心,再用模糊c-均值法决定最终分类结果的集成算法,并将其应用到松花江流域土壤分类中,得到了较为切合实际的分类结果.  相似文献   

5.
For conventional fuzzy clustering-based approaches to fuzzy system identification, a fuzzy function is used for cluster formation and another fuzzy function is used for cluster validation to determine the number and location of the clusters which define IF parts of the rule base. However, the different fuzzy functions used for cluster formation and validation may not indicate the same best number and location of the clusters. This potential disparity motivates us to propose a new fuzzy clustering-based approach to fuzzy system identification based on the bi-objective fuzzy c-means (BOFCM) cluster analysis. In this approach, we use the BOFCM function for both cluster formation and validation to simultaneously determine the number and location of the clusters which we hope can efficiently and effectively define IF parts of the rule base. The proposed approach is validated by applying it to the truck backer-upper problem with an obstacle in the center of the field.  相似文献   

6.
Clustering algorithms divide up a dataset into a set of classes/clusters, where similar data objects are assigned to the same cluster. When the boundary between clusters is ill defined, which yields situations where the same data object belongs to more than one class, the notion of fuzzy clustering becomes relevant. In this course, each datum belongs to a given class with some membership grade, between 0 and 1. The most prominent fuzzy clustering algorithm is the fuzzy c-means introduced by Bezdek (Pattern recognition with fuzzy objective function algorithms, 1981), a fuzzification of the k-means or ISODATA algorithm. On the other hand, several research issues have been raised regarding both the objective function to be minimized and the optimization constraints, which help to identify proper cluster shape (Jain et al., ACM Computing Survey 31(3):264–323, 1999). This paper addresses the issue of clustering by evaluating the distance of fuzzy sets in a feature space. Especially, the fuzzy clustering optimization problem is reformulated when the distance is rather given in terms of divergence distance, which builds a bridge to the notion of probabilistic distance. This leads to a modified fuzzy clustering, which implicitly involves the variance–covariance of input terms. The solution of the underlying optimization problem in terms of optimal solution is determined while the existence and uniqueness of the solution are demonstrated. The performances of the algorithm are assessed through two numerical applications. The former involves clustering of Gaussian membership functions and the latter tackles the well-known Iris dataset. Comparisons with standard fuzzy c-means (FCM) are evaluated and discussed.  相似文献   

7.
This paper tackles the problem of showing that evolutionary algorithms for fuzzy clustering can be more efficient than systematic (i.e. repetitive) approaches when the number of clusters in a data set is unknown. To do so, a fuzzy version of an Evolutionary Algorithm for Clustering (EAC) is introduced. A fuzzy cluster validity criterion and a fuzzy local search algorithm are used instead of their hard counterparts employed by EAC. Theoretical complexity analyses for both the systematic and evolutionary algorithms under interest are provided. Examples with computational experiments and statistical analyses are also presented.  相似文献   

8.
An new initialization method for fuzzy c-means algorithm   总被引:1,自引:0,他引:1  
In this paper an initialization method for fuzzy c-means (FCM) algorithm is proposed in order to solve the two problems of clustering performance affected by initial cluster centers and lower computation speed for FCM. Grid and density are needed to extract approximate clustering center from sample space. Then, an initialization method for fuzzy c-means algorithm is proposed by using amount of approximate clustering centers to initialize classification number, and using approximate clustering centers to initialize initial clustering centers. Experiment shows that this method can improve clustering result and shorten clustering time validly.  相似文献   

9.
自适应约束模糊C均值聚类算法   总被引:1,自引:0,他引:1  
针对经典C均值聚类算法和模糊C均值聚类算法所存在的对初始聚类中心过分依赖以及需要预先知道实际聚类数目的问题,基于模糊C均值聚类算法提出了一种新算法:自适应约束模糊C均值(ACFCM)聚类算法,它在模糊C均值聚类算法的基础上,给目标函数加入了一个惩罚项,使得上述问题得以解决.并通过仿真实验证实了新算法的可行性和有效性.  相似文献   

10.
Fuzzy and possibilistic optimization methods are demonstrated to be effective tools in solving large-scale problems. In particular, an optimization problem in radiation therapy with various orders of complexity from 1000 to 62,250 constraints for fuzzy and possibilistic linear and nonlinear programming implementations possessing (1) fuzzy or soft inequalities, (2) fuzzy right-hand side values, and (3) possibilistic right-hand side is used to demonstrate that fuzzy and possibilistic optimization methods are tractable and useful. We focus on the uncertainty in the right side of constraints which arises, in the context of the radiation therapy problem, from the fact that minimal and maximal radiation tolerances are ranges of values, with preferences within the range whose values are based on research results, empirical findings, and expert knowledge, rather than fixed real numbers. The results indicate that fuzzy/possibilistic optimization is a natural and effective way to model various types of optimization under uncertainty problems and that large fuzzy and possibilistic optimization problems can be solved efficiently.  相似文献   

11.
There are many data clustering techniques available to extract meaningful information from real world data, but the obtained clustering results of the available techniques, running time for the performance of clustering techniques in clustering real world data are highly important. This work is strongly felt that fuzzy clustering technique is suitable one to find meaningful information and appropriate groups into real world datasets. In fuzzy clustering the objective function controls the groups or clusters and computation parts of clustering. Hence researchers in fuzzy clustering algorithm aim is to minimize the objective function that usually has number of computation parts, like calculation of cluster prototypes, degree of membership for objects, computation part for updating and stopping algorithms. This paper introduces some new effective fuzzy objective functions with effective fuzzy parameters that can help to minimize the running time and to obtain strong meaningful information or clusters into the real world datasets. Further this paper tries to introduce new way for predicting membership, centres by minimizing the proposed new fuzzy objective functions. And experimental results of proposed algorithms are given to illustrate the effectiveness of proposed methods.  相似文献   

12.
The field of cluster analysis is primarily concerned with the partitioning of data points into different clusters so as to optimize a certain criterion. Rapid advances in technology have made it possible to address clustering problems via optimization theory. In this paper, we present a global optimization algorithm to solve the fuzzy clustering problem, where each data point is to be assigned to (possibly) several clusters, with a membership grade assigned to each data point that reflects the likelihood of the data point belonging to that cluster. The fuzzy clustering problem is formulated as a nonlinear program, for which a tight linear programming relaxation is constructed via the Reformulation-Linearization Technique (RLT) in concert with additional valid inequalities. This construct is embedded within a specialized branch-and-bound (B&B) algorithm to solve the problem to global optimality. Computational experience is reported using several standard data sets from the literature as well as using synthetically generated larger problem instances. The results validate the robustness of the proposed algorithmic procedure and exhibit its dominance over the popular fuzzy c-means algorithmic technique and the commercial global optimizer BARON.  相似文献   

13.
The paradigm of clustering (unsupervised learning) viewed as a fundamental tool for data analysis has been found useful in fuzzy modelling. While the objective functions guiding the clustering mechanisms are by and large direction-free (namely, they do not distinguish between independent (input) and dependent (output) variables, for most of the models this discrimination becomes of vital importance. The method of directional clustering takes the directionality requirement into account by incorporating the nature of the functional relationships into the objective function guiding the formation of the clusters. The complete clustering algorithm is presented. The role of this method in a two-phase fuzzy identification scheme is also revealed in detail.  相似文献   

14.
There exist many data clustering algorithms, but they can not adequately handle the number of clusters or cluster shapes. Their performance mainly depends on a choice of algorithm parameters. Our approach to data clustering and algorithm does not require the parameter choice; it can be treated as a natural adaptation to the existing structure of distances between data points. The outlier factor introduced by the author specifies a degree of being an outlier for each data point. The outlier factor notion is based on the difference between the frequency distribution of interpoint distances in a given dataset and the corresponding distribution of uniformly distributed points. Then data clusters can be determined by maximizing the outlier factor function. The data points in dataset are divided into clusters according to the attractor regions of local optima. An experimental evaluation of the proposed algorithm shows that the proposed method can identify complex cluster shapes. Key advantages of the approach are: good clustering properties for datasets with comparatively large amount of noise (an additional data points), and an absence of important parameters which adequate choice determines the quality of results.  相似文献   

15.
We propose a new technique to perform unsupervised data classification (clustering) based on density induced metric and non-smooth optimization. Our goal is to automatically recognize multidimensional clusters of non-convex shape. We present a modification of the fuzzy c-means algorithm, which uses the data induced metric, defined with the help of Delaunay triangulation. We detail computation of the distances in such a metric using graph algorithms. To find optimal positions of cluster prototypes we employ the discrete gradient method of non-smooth optimization. The new clustering method is capable to identify non-convex overlapped d-dimensional clusters.  相似文献   

16.
Clustering is a popular data analysis and data mining technique. Since clustering problem have NP-complete nature, the larger the size of the problem, the harder to find the optimal solution and furthermore, the longer to reach a reasonable results. A popular technique for clustering is based on K-means such that the data is partitioned into K clusters. In this method, the number of clusters is predefined and the technique is highly dependent on the initial identification of elements that represent the clusters well. A large area of research in clustering has focused on improving the clustering process such that the clusters are not dependent on the initial identification of cluster representation. Another problem about clustering is local minimum problem. Although studies like K-Harmonic means clustering solves the initialization problem trapping to the local minima is still a problem of clustering. In this paper we develop a new algorithm for solving this problem based on a tabu search technique—Tabu K-Harmonic means (TabuKHM). The experiment results on the Iris and the other well known data, illustrate the robustness of the TabuKHM clustering algorithm.  相似文献   

17.
This paper presents a fuzzy clustering algorithm, called the alternative fuzzy c-numbers (AFCN) clustering algorithm, for LR-type fuzzy numbers based on an exponential-type distance function. On the basis of the gross error sensitivity and influence function, this exponential-type distance is claimed to be robust with respect to noise and outliers. Hence, the AFCN clustering algorithm is more robust than the fuzzy c-numbers (FCN) clustering algorithm presented by Yang and Ko (Fuzzy Sets and Systems 84 (1996) 49). Some numerical experiments were performed to assess the performance of FCN and AFCN. Numerical results clearly indicate AFCN to be superior in performance to FCN. Finally, we apply the FCN and AFCN algorithms to real data. The experimental results show the superiority of AFCN in Taiwanese tea evaluation.  相似文献   

18.
硬聚类和模糊聚类的结合——双层FCM快速算法   总被引:3,自引:0,他引:3  
模糊c均值(FCM)聚类算法在模式识别领域中得到了广泛的应用,但FCM算法在大数据集的情况下需要大量的CPU时间,令用户感到十分不便,提高算法的速度是一个急待解决的问题。本文提出的双层FCM聚类算法是一种快速算法,它体现了硬聚类和模糊聚类的结合,以硬聚类的结果对模糊聚类的初始值进行指导,从而明显地缩短了迭代过程。双层FCM算法所用的CPU时间仅为FCM算法的十三分之一,因而具有很强的实用价值。  相似文献   

19.
基于微分进化算法的FCM图像分割算法   总被引:1,自引:1,他引:0  
为提高模糊C均值(FCM)算法的自动化程度,提出基于微分进化算法的FCM图像分割算法(DEFCM),利用微分进化算法全局性和鲁棒性的特点自动确定分类数和初始聚类中心,再将其作为模糊c均值聚类的初始聚类中心,弥补FCM算法的不足.实验表明该算法不仅能够正确地对图像分类,而且能获得较好的图像分割效果和质量.  相似文献   

20.
In this paper, a cluster analysis method based on fuzzy equivalence relation is proposed. At first, the distance formula between two trapezoidal fuzzy numbers is used to aggregate subjects' linguistic assessments about attributes ratings to obtain the compatibility relation. Then a fuzzy equivalence relation based on the fuzzy compatibility relation can be constructed. Finally, using a cluster validity index to determine the best number of clusters and taking suitable λ-cut value, the clustering analysis can be effectively implemented. By utilizing this clustering analysis, the subjects' fuzzy assessments with various rating attitudes can be taken into account in the aggregation process to assure more convincing and accurate cluster analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号