首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
以负载Au的金属有机骨架材料(AuNPs/Cu-TPA)标记CEA抗体(Ab2)为信号探针,通过电还原的方法将氧化石墨烯还原到电极上,研制了一种捕获CEA抗体(Ab1)的电化学免疫传感器,并将其应用于癌胚抗原(CEA)检测.所合成的MOFs材料中含有大量Cu2+,且电化学信号比较稳定,因此可以通过检测MOFs材料中Cu2+的信号实现对CEA的检测.此信号探针不需要预处理和酸处理,易负载贵金属从而固定抗体,大大简化了检测步骤并缩短了检测时间.此传感器对CEA的检测灵敏度好,操作简便.在最优实验条件下,此传感器的线性范围为0.1~ 80 ng/mL,检出限为0.03 ng/mL,线性相关系数为0.9887,可用于真实样品中CEA的测定.  相似文献   

2.
《Electroanalysis》2006,18(24):2451-2457
This paper describes a layer‐by‐layer (LBL) self‐assembly process of chitosan (CTS) and gold nanoparticles (Au) on the pretreated negatively charged glassy carbon (GC) electrode to fabricate electrochemistry immunosensor with a nontoxic biomimetic interface, which provided an environment similar to a native system and allowed more freedom in orientation for immobilization of carcinoembryonic antibody (anti‐CEA) to monitor carcinoembryonic antigen (CEA). UV‐vis spectroscope, atomic force microscopy (AFM), and cyclic voltammetric (CV) measurements were used to follow the multilayer film formation. The performance of the biominetic interface and factors influencing the assay system were investigated in detail. The differential pulse voltammetry (DPV) current response is used for the CEA concentration assay. The dynamic range was from 0.50 to 80.00 ng mL?1 with a detection limit of 0.27 ng mL?1 at 3σ. In addition, the experiment results indicate that immobilization described in this proposed method exhibits a good sensitivity, selectivity, and stability.  相似文献   

3.
《Electroanalysis》2006,18(10):1007-1013
A highly hydrophilic and nontoxic colloidal silica nanoparticle/titania sol–gel composite membrane was prepared on a gold electrode via a chemical vapor deposition method. With carcinoembryonic antigen (CEA) as a model antigen and encapsulation of carcinoembryonic antibody (anti‐CEA) in the composite architecture, this membrane could be used for reagentless electrochemical immunoassay. The presence of silica nanoparticles provided a congenial microenvironment for adsorbed biomolecules. The formation of immunoconjugate by a simple one‐step immunoreaction between CEA in sample solution and the immobilized anti‐CEA introduced the change in the potential. The modified procedure was further characterized by electrochemical impedance spectroscopy and cyclic voltammetry. Compared to the commonly applied methods, i.e., the TiO2 direct embedding procedure, this strategy could allow for antibodies immobilized with higher loading amount and better retained immunoactivity. The resulting immunosensor exhibited high sensitivity, good precision, acceptable stability, accuracy, reproducibility and wide linear range from 1.5 to 240 ng mL?1 with a detection limit of 0.5 ng mL?1 at 3σ. Analytical results of clinical samples show that the developed immunoassay is comparable with the enzyme‐linked immunosorbent assays (ELISAs) method, implying a promising alternative approach for detecting CEA in the clinical diagnosis. Furthermore, this composite membrane could be used efficiently for the entrapment of other biomarkers and clinical applications.  相似文献   

4.
An amperometric carcinoembryonic antigen (CEA) immunosensor was fabricated based on Prussian blue (PB), nano-calcium carbonate (nano-CaCO3) and nano-gold modified glassy carbon electrode. First, PB as a mediator was deposited on glassy carbon electrode to obtain a negatively charged surface. Then, positive nano-CaCO3 was adsorbed on the PB modified electrode through electrostatic interaction. Subsequently, gold nanoparticles were deposited on the nano-CaCO3/PB modified electrode. The use of two kinds of nanomaterials (nano-CaCO3 and nano-gold) with good biocompatibility as immobilization matrixes not only provides a biocompatible surface for protein loading but also avoids the leaking of PB. The size of nano-CaCO3 was characterized by transmission electron microscopy (TEM). The factors influencing the performance of the immunosensor presented were studied in detail. Under the optimized conditions, cyclic voltammograms (CV) determination of CEA showed a specific response in two concentration ranges from 0.3 to 20 ng mL?1 and from 20 to 100 ng mL?1 with a detection limit of 0.1 ng mL?1 at a signal-to-noise ratio of 3. The immunosensor presented exhibited high selectivity, sensitivity and good stability.  相似文献   

5.
A highly sensitive amperometric immunosensor has been developed for the detection of carcinoembryonic antigen (CEA). It is based on (a) Prussian Blue nanoparticles coated with poly(diallyldimethylammonium chloride) (P-PB) and (b) double-layer gold nanocrystals. The sensor was obtained by first electrodepositing porous gold nanocrystals on the glassy carbon electrode (GCE), and then by modifying the electrode with the coated P-PB. Subsequently, colloidal gold nanoparticles (nano-Au) were adsorbed onto the GCE by electrostatic interactions between the negatively charged nano-Au and the positively charged P-PB to immobilize CEA antibodies. Finally, bovine serum albumin was employed to block possible remaining active sites and to prevent the non-specific adsorption on the nano-Au. This immunosensor was characterized by cyclic voltammetry and scanning electron microscopy. The working range was adjusted to two concentration ranges, viz. from 0.5 to 10 ng.mL?1, and from 10 to 120 ng.mL?1 of CEA, with a detection limit of 0.2 ng.mL?1 at three times the background noise.  相似文献   

6.
A high‐sensitivity carcinoembryonic antigen immunosensor was successfully prepared via a one‐step hydrothermal method, wherein nitrogen‐doped graphene oxide (Nr GO) loaded Ag and Co3O4 nanomaterials were synthesized using ammonia as the nitrogen source. Doping nitrogen atoms into the graphene structure forms a new type of N‐type semiconductor with an increased number of graphene layers and more active sites for bonding with chemicals, thereby providing excellent in biocompatibility and good electrical conductivity. The electrical signal of the sensor is further amplified due to the good catalytic effect of Co3O4 and Ag NPs on H2O2. The signal probe requires neither pretreatment nor acid treatment, and can be easy to loaded with metal‐immobilized antibodies, which greatly simplifies the detection step not shorten the detection time. The sensor has good sensitivity to detecting carcinoembryonic antigen (CEA) and can easily operate, and requires mild reaction conditions. Under optimal experimental conditions, the linear range of the sensor is 0.001–200 ng ? mL?1, the detection limit is 0.18 pg ? mL?1, and the linear correlation coefficient is 0.991, which can be used for CEA determination of the actual sample.  相似文献   

7.
A sensitive electrochemical immunosensor was developed for detecting fumonisin B1 (FB1) in corn using the single‐walled carbon nanotubes/chitosan. The detection mechanism of immunosensor was based on an indirect competitive binding to a fixed amount of anti‐FB1 between free FB1 and FB1‐bovine serum albumin, which was conjugated on covalently functionalized nanotubes/chitosan laid on the glass carbon electrode. The anti‐rabbit immunoglobulin G secondary antibody labeled with alkaline phosphatase was then bound to the electrode surface through reactisubstrate α‐naphthyl phosphate, which produced electrochemical signal. Under optimized conditions, this method could detect FB1 from 0.01 to 1000 ng mL?1 with a detection limit of 2 pg mL?1. This is well below the detection limit required from European Union legislation, 2–4 mg L?1. Moreover, good recoveries were obtained for the detection of spiked corn samples and actual corn samples. As the method has good sensitivity and recovery for detecting FB1, it is a practical detection method.  相似文献   

8.
A approach was successfully employed for constructing a solid‐state electrochemiluminescence (ECL) immunosensor by layer‐by‐layer self‐assembly of multiwall carbon nanotubes (MWCNTs)‐Nafion composite film, Ru(bpy)32+/nano‐Pt aggregates (Ru‐PtNPs) and Pt nanoparticles (PtNPs). The influence of Pt nanoparticles on the ECL intensity was quantitatively evaluated by calculating the electroactive surface area of different electrodes with or without PtNPs to immobilize Ru(bpy)32+. The principle of ECL detection for target α‐fetoprotein antigen (AFP) was based on the increment of resistance after immunoreaction, which led to a decrease in ECL intensity. The linear response range was 0.01–10 ng mL?1 with the detection limit of 3.3 pg mL?1. The immunosensor exhibited advantages of simple preparation and operation, high sensitivity and good selectivity.  相似文献   

9.
Present work demonstrates the fabrication of new and facile sandwich‐type electrochemical immunosensor based on palladium nanoparticles (PdNPs), polyaniline (PANI) and fullerene‐C60 nanocomposite film modified glassy carbon electrode (PdNP@PANI‐C60/GCE) for ultrasensitive detection of Prostate‐specific antigen (PSA) biomarker. PdNP@PANI‐C60 was electrochemically synthesized on GCE and used as an electroactive substrate. PdNP@PANI‐C60 was characterized by scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Primary antibody anti‐PSA (Ab1) was covalently immobilized on PdNP@PANI‐C60/GCE using NHS/EDC linkers. In the presence of PSA antigen, horseradish peroxidase secondary antibody (HRP‐Ab2) was brought into the surface of the electrode, developing stable amplified signals of H2O2 reduction. Under the optimal conditions, a linear curve for determination of PSA at the proposed immunosensor was 1.6×10?4 ng.mL?1 to 38 ng.mL?1 with a limit of detection (LOD) of 1.95×10?5 ng.mL?1. The proposed immunosensor was successfully validated in serum and urine samples towards PSA detection with satisfactory and acceptable results.  相似文献   

10.
This paper describes the results obtained in the development of the first electrochemical immunosensor described to date for the detection of E‐cadherin (E‐cad) protein, a relevant biomarker of prognosis and metastasis in cancer, based on the use of magnetic microcarriers (MBs) and amperometric transduction at screen‐printed carbon electrodes (SPCEs). Thus, the determination of E‐cad protein involved the use of two specific antibodies against this protein (one of them labelled with HRP) in a sandwich configuration onto HOOC‐MBs. The magnetic bioconjugates were captured onto SPCEs and the amperometric transduction was performed using the H2O2/hydroquinone (HQ) system. Under optimal conditions, this bioplatform demonstrated a wide linear concentration range (0.50–25 ng mL?1) and a detection limit as low as 0.16 ng mL?1, well below the optimal cut‐off level for the E‐cad protein (defined as 10,000 ng mL?1 for soluble E‐cad levels in serum). The developed sensor also showed a good reproducibility among measurements with seven different sensors constructed in the same manner (RSD, 5.4 %), stability for more than 15 days and good specificity towards other proteins commonly found on biological samples. The applicability of this simple handling bioplatform for the direct determination of this protein in cell lysates with different metastatic potential and extracts from paraffined‐embedded human colorectal cancer tissues of different grade were also demonstrated.  相似文献   

11.
Magnetic electrochemiluminescent Fe3O4/CdSe–CdS nanoparticle/polyelectrolyte nanostructures have been synthesized and used to fabricate an electrochemiluminescence (ECL) immunosensor for the detection of carcinoembryonic antigen (CEA). CEA is a protein used as a biomarker for several cancers; particularly, to monitor response to treatment in colon and rectal cancer patients. The nanocomposites can be easily separated and firmly attached to an electrode owing to their excellent magnetic properties. This represents a promising advantage for bioassay applications. More importantly, the nanostructures exhibit intense and stable ECL emissions in neutral solution, which makes them ideal for ECL immunosensing. The 3‐aminopropyltriethoxysilane (APS) polyelectrolyte shell on the nanostructure surface not only enhances the intensity and stability of the ECL signal, but also acts as a crosslinker for immunosensor fabrication. A CEA antibody immobilized onto a nanocomposite/APS/electrode with gold nanoparticles comprises the ECL immunosensor. The principle of ECL detection for CEA is based on a change in steric hindrance after immunoreaction, which leads to a decrease in ECL intensity. A wide detection range (0.064 pg ml?1–10 ng ml?1) and low detection limit (0.032 pg ml?1) are achieved. The immunosensor is highly sensitive and selective, and exhibits excellent stability and good reproducibility. It thus has great potential for clinical protein detection. In particular, this approach uses a novel class of bifunctional nanocomposites that display both intense ECL and excellent magnetism, which renders them suitable for a large range of bioassay applications.  相似文献   

12.
A signal‐enhanced immunosensor has been developed by self‐assembling Au NPs onto a ferrocene‐branched poly(allylamine)/multiwalled carbon nanotubes (PAA‐Fc/MWNTs) modified electrode for the sensitive determination of hepatitis B surface antigen (HBsAg) as a model protein. The formation of PAA‐Fc/MWNTs composite not only effectively avoided the leakage of Fc and retained its electrochemical activity, but also enhanced the conductivity and charge‐transport properties of the composite. Further adsorption of Au NPs into the PAA matrix provided both the interactive sites for the immobilization of hepatitis B surface antibody (HBsAb) and a favorable microenvironment to maintain its activity. Tests performed with this immunosensor showed a specific response to HBsAg in the range of 0.1–350.0 ng mL?1 with a detection limit of 0.03 ng mL?1.  相似文献   

13.
This paper describes a highly sensitive and label‐free electrochemical immunosensor for the detection of 1‐pyrenebutyric acid (PBA) which is based on a graphene (GS), chitosan (CS), and ionic liquid (IL) composite modified glassy carbon electrode (GS‐CS‐IL/GCE). The modification process was monitored by transmission electron microscopy (TEM) and cyclic voltammetry (CV). Due to the synergistic effects of GS, CS, and IL, the biosensor exhibits excellent selectivity to PBA. The current response of the proposed immunosensor decreases linearly at two concentration ranges from 0.01 to 5 and from 5 to 150 ng mL?1 with a detection limit of 0.01 ng mL?1.  相似文献   

14.
Novel luminescence‐functionalized metal–organic frameworks (MOFs) with superior electrogenerated chemiluminescence (ECL) properties were synthesized based on zinc ions as the central ions and tris(4,4′‐dicarboxylicacid‐2,2′‐bipyridyl)ruthenium(II) dichloride ([Ru(dcbpy)3]2+) as the ligands. For potential applications, the synthesized MOFs were used to fabricate a “signal‐on” ECL immunosensor for the detection of N‐terminal pro‐B‐type natriuretic peptide (NT‐proBNP). As expected, enhanced ECL signals were obtained through a simple fabrication strategy because luminescence‐functionalized MOFs not only effectively increased the loading of [Ru(dcbpy)3]2+, but also served as a loading platform in the ECL immunosensor. Furthermore, the proposed ECL immunosensor had a wide linear range from 5 pg mL?1 to 25 ng mL?1 and a relatively low detection limit of 1.67 pg mL?1 (signal/noise=3). The results indicated that luminescence‐functionalized MOFs provided a novel amplification strategy in the construction of ECL immunosensors and might have great prospects for application in bioanalysis.  相似文献   

15.
We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng?·?mL-1 concentration range, with a detection limit of 1.8 pg?·?mL-1.
Figure
The Fe3O4@C@CNC was prepared and applied in a CEA immunosensor with the help of a flow-injection photoluminescence system.  相似文献   

16.
A rapid and ultrasensitive electrochemiluminescence (ECL) competitive immunoassay based on CdSe quantum dots (QDs) and the shorter chain as possible (cysteamine and glutaraldehyde) has been designed for the detection of salbutamol (SAL). Cysteamine and glutaraldehyde made coating antigen immobilize well on the gold electrode surface through the reaction between functional groups, which brought about the simplicity of the immunosensor to some extent. Transmission electron microscopy image, dynamic light scattering, photoluminescence, ultraviolet‐visible absorption and electrochemical impedance spectra were used to characterize the prepared CdSe QDs and the cysteamine/glutaraldehyde/Ovalbumin‐SAL/anti‐SAL‐QDs immunosensor. In the air‐saturated PBS buffer containing 0.1 M K2S2O8 and 0.1 M KCl (pH 9.0), a strong ECL emission of QDs can be observed which depended linearly on the logarithm of the salbutamol concentration with a wide range from 0.05 ng mL?1 to 100 ng mL?1, and a detection limit of 0.0056 ng mL?1. The sensitivity, repeatability, and specificity of the ECL immunosensor have been evaluated. The sensor has been applied to real samples with satisfactory results. This work will open new ways of detecting food additive residue based on QDs ECL in immunoassays.  相似文献   

17.
Gao X  Zhang Y  Wu Q  Chen H  Chen Z  Lin X 《Talanta》2011,85(4):1980-1985
A simple and controllable one-step electrodeposition method for the preparation of a chitosan-carbon nanotubes-gold nanoparticles (CS-CNTs-GNPs) nanocomposite film was used to fabricate an immunosensor for detection of carcinoembryonic antigen (CEA). The porous three-dimensional CS-CNTs-GNPs nanocomposite film, which offered a large specific surface area for immobilization of antibodies, exhibited improved conductivity, high stability and good biocompatibility. The morphology of the formed nanocomposite film was investigated by scanning electron microscopy (SEM), and the electrochemical behaviors of the immunosensor were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Under the optimal conditions, the proposed immunosensor could detect CEA in two linear ranges from 0.1 to 2.0 ng mL−1 and from 2.0 to 200.0 ng mL−1, with a detection limit of 0.04 ng mL−1. The immunosensor based on CS-CNTs-GNPs nanocomposite film as the antibody immobilization matrix could exhibit good sensitivity, stability, and reproducibility for the determination of CEA.  相似文献   

18.
A facile and ultrasensitive electrochemiluminescent (ECL) immunosensor for detection of prostate-specific antigen (PSA) was designed by using CdTe quantum dots coated silica nanoparticles (SiO2@QDs) as bionanolabels. To construct such an electrochemiluminescence immunosensor, gold nanoparticles-dotted graphene composites were immobilized on the working electrode, which can increase the surface area to capture a large amount of primary antibodies as well as improve the electronic transmission rate. The as-prepared SiO2@QDs used as bionanolabels, showed good ECL performance and good ability of immobilization for secondary antibodies. The approach provided a good linear response ranging from 0.005 to 10 ng?mL?1 with a low detection limit of 0.0032 ng?mL?1. Such immunosensor showed good precision, acceptable stability, and reproducibility. Satisfactory results were obtained for determination of PSA in human serum samples. Therefore, the proposed method provides a new promising platform of clinical immunoassay for other biomolecules.  相似文献   

19.
An immunosensor has been fabricated for direct amperometric determination of carcinoembryonic antigen. It is based on a biocompatible composite film composed of porous chitosan (pChit) and gold nanoparticles (GNPs). Firstly, a pChit film was formed on a glassy carbon electrode by means of electrodeposition. Then, thionine as a redox probe was immobilized on the pChit film modified electrode using glutaraldehyde as a cross-linker. Finally, GNPs were adsorbed on the electrode surface to assemble carcinoembryonic antibody (anti-CEA). The surface morphology of the pChit films was studied by means of a scanning electron microscope. The immunosensor was further characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The electrochemical behaviors and factors influencing the performance of the resulting immunosensors were studied in detail. Results showed that the pChit films can enhance the surface coverage of antibodies and improve the sensitivity of the immunosensor. Under optimal conditions, the immunosensor was highly sensitive to CEA with a detection limit of 0.08 ng·mL?1 at three times the background noise and linear ranges of 0.2~10.0 ng·mL?1 and 10.0~160 ng·mL?1. Moreover, the immunosensor exhibited high selectivity, good reproducibility and stability.  相似文献   

20.
In this report, a label‐free electrochemical aptasensor for carcino‐embryonic antigen (CEA) was successfully developed based on a ternary nanocomposite of gold nanoparticles, hemin and graphene nanosheets (AuNPs‐HGNs). This nanocomposite was prepared by decorating gold nanoparticles on the surface of hemin functionalized graphene nanosheets via a simple wet‐chemical strategy. The aptamer can be assembled on the surface of AuNPs‐HGNs/GCE (glassy carbon electrode) through Au‐S covalent bond to form the sensing interface. Hemin absorbed on the graphene nanosheets not only acts as a protective agent of graphene sheets, but also as an in situ probe base on its excellent redox properties. Gold nanoparticles provide with both numerous binding sites for loading CEA binding aptamer (CBA) and good conductivity to promote the electron transfer. The current changes, which are caused by CEA specifically binding on the modified electrode, are exploited for the label‐free detection of CEA in a very rapid and convenient protocol. Therefore, the method has advantages of high sensitivity, wide linear range (0.0001–10 ng mL?1), low detection limit (40 fg mL?1) and attractive specificity. The results illustrate that the proposed label‐free electrochemical aptasensor has a potential application in the biological or clinical target analysis for its simple operation and low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号