首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   

2.
An ionic liquid functionalized graphene film was prepared and PdAu nanoparticles (NPs) were electrodeposited on it. The PdAu NPs were characterized by various methods and they showed the features of alloys. In 0.2 M H2SO4 solution, oxalic acid (OA) exhibited a sensitive anodic peak at the resulting electrode at about 1.1 V (vs. SCE), and the peak current was linear to OA concentration in the range of 5–100 µM with a sensitivity of 45.5 µA/mM. The detection limit was 2.7 µM (S/N=3). The electrode was successfully applied to the determination of OA in real sample.  相似文献   

3.
In this study, a 3Au? 1Pd alloy nanoparticles/graphene composite (3Au? 1Pd alloy NPs/GN) with carboxyl groups and hydroxyl groups was prepared facilely by co‐reduction of graphene oxide (GO), HAuCl4, K2PdCl4, with an Au? Pd alloy molar ratio of 3 : 1. The composite modified glass carbon electrode (GCE) showed a good performance for detecting bisphenol A (BPA) due to the enhanced electron transfer kinetics and large active surface area. The effective enrichment of BPA is attributed to the carboxyl groups and hydroxyl groups on the composite. According to the results of differential pulse voltammetry (DPV), the BPA oxidation current is linear to its concentration in the range of 10 nM–5.0 µM (R=0.998), and the detection limit is found to be 4.0 nM (S/N=3).  相似文献   

4.
In this paper electropolymerization of a thin film of para‐phenylenediamine (PPD) is studied at glassy carbon electrode (GCE) in sulfuric acid media by cyclic voltammetry. The results showed that this polymer was conducting and had a reproducible redox couple in the potential region from 0.0 to 0.4 V in phosphate buffer solution. This modified GCE (p‐PPD‐GCE) was applied for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) using differential pulse voltammetry (DPV). The p‐PPD‐GCE in 0.1 M phosphate buffer solution (pH 5.0) separated the DPV signals of AA, DA and UA with sufficient potential differences between AA–DA and DA–UA and also enhanced their oxidation peak currents. The oxidation currents were increased from 2.0 to 2000.0 µM for AA, 10.0 to 1250.0 µM for DA and 50.0 to 1600.0 µM for UA. The detection limits were evaluated as 0.4, 1.0 and 2.5 µM for AA, DA and UA, respectively (S/N=3).  相似文献   

5.
A carbon paste electrode (CPE) was modified by incorporation of graphene nano sheets and a ferrocene derivative. The modified electrode showed an excellent electrocatalytic effect on the oxidation of epinephrine. In phosphate buffer solution (PBS) of pH 7.0, the oxidation current increased linearly with concentration of epinephrine in the range of 0.05–550.0 µM and a detection limit (3σ) 27.0 nM was obtained for epinephrine. Then the modified electrode was used to determine epinephrine in an excess of uric acid and folic acid by SWV.  相似文献   

6.
A magnetically separable Fe3O4@Diaion HP-2MG composite was prepared using the coprecipitation method and the resulting magnetic Fe3O4@Diaion HP-2MG composites were used for the separation and preconcentration of trace amounts of dopamine. For the detection stage, square wave voltammetry on a disposable graphene–screen-printed carbon electrode was successfully used for the determination of dopamine. The graphene–screen-printed carbon electrode exhibited excellent electroanalytical performance for dopamine. The linear concentration range was from 0.8 to 80?µM and a detection limit of 50?nM for dopamine was obtained. In combination with the magnetic solid-phase extraction method, the sensor response was linearly proportional to the concentration of dopamine in the range of 0.01–6.0?µM with a correlation coefficient of approximately 0.9992. The detection limit of the sensor was found to be 5.0?nM by square wave voltammetry. The combined methodology was successfully applied to determine dopamine in urine samples with good recoveries ranging from 95 to 98%.  相似文献   

7.
In this work, a boron‐doped diamond (BDD) electrode was used for the electroanalytical determination of indole‐3‐acetic acid (IAA) phytohormone by square‐wave voltammetry. IAA yielded a well‐defined voltammetric response at +0.93 V (vs. Ag/AgCl) in Britton–Robinson buffer, pH 2.0. The process could be used to determine IAA in the concentration range of 5.0 to 50.0 µM (n=8, r=0.997), with a detection limit of 1.22 µM. The relative standard deviation of ten measurements was 2.09 % for 20.0 µM IAA. As an example, the practical applicability of BDD electrode was tested with the measurement of IAA in some plant seeds.  相似文献   

8.
Sadik Cogal 《Analytical letters》2018,51(11):1666-1679
Poly(3,4-ethylenedioxythiophene) was deposited on a reduced graphene oxide-decorated glassy carbon electrode through an electrochemical polymerization. The resulting glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was applied as an electrochemical biosensor for the determination of dopamine in the presence of ascorbic acid and uric acid. The material deposited on glassy carbon electrode was investigated in terms of morphology and structural analysis. The comparison of electrochemical behavior of the glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode with the glassy carbon electrode-graphene oxide, glassy carbon electrode-reduced graphene oxide, and glassy carbon electrode-poly(3,4-ethylenedioxythiophene) electrodes exhibited high electrocatalytic activity for dopamine detection. Electrochemical kinetic parameters of glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene), including the charge transfer coefficient α (0.49) and electron transfer rate constant ks (1.04), were determined and discussed. The glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was studied for the determination of dopamine by differential pulse voltammetry and exhibited a linear range from 19.6 to 122.8?µM with a sensitivity of 3.27?µA?µM?1?cm?2 and a detection limit of 1.92?µM. The developed biosensor exhibited good selectivity toward dopamine with high reproducibility and stability.  相似文献   

9.
In this paper a molecular wire modified carbon paste electrode (MW‐CPE) was firstly prepared by mixing graphite powder with diphenylacetylene (DPA). Then a graphene (GR) and chitosan (CTS) composite film was further modified on the surface of MW‐CPE to receive the graphene functionalized electrode (CTS‐GR/MW‐CPE), which was used for the sensitive electrochemical detection of adenosine‐5′‐triphosphate (ATP). The CTS‐GR/MW‐CPE exhibited excellent electrochemical performance and the electrochemical behavior of ATP on the CTS‐GR/MW‐CPE was carefully studied by cyclic voltammetry with an irreversible oxidation peak appearing at 1.369 V (vs. SCE). The electrochemical parameters such as charge transfer coefficient (α) and electrode reaction standard rate constant (ks) were calculated with the results of 0.53 and 5.28×10?6 s?1, respectively. By using differential pulse voltammetry (DPV) as detection technique, the oxidation peak current showed good linear relationship with ATP concentration in the range from 1.0 nM to 700.0 µM with a detection limit of 0.342 nM (3σ). The common coexisting substances, such as uric acid, ascorbic acid and guanosine‐5′‐triphosphate (GTP), showed no interferences and the modified electrode was successfully applied to injection sample detection.  相似文献   

10.
Poly(pyridine‐3‐boronic acid) (PPBA)/multiwalled carbon nanotubes (MWCNTs) composite modified glassy carbon electrode (GCE) was used for the simultaneous determination of ascorbic acid (AA), 3,4‐dihydroxyphenylacetic acid (DOPAC) and uric acid (UA). The anodic peaks for AA, DOPAC and UA at the PPBA/MWCNTs/GCE were well resolved in phosphate buffer solution (pH 7.4). The electrooxidation of AA, DOPAC and UA in the mixture solution was investigated. The peak currents increase with their concentrations increasing. The detection limits (S/N=3) of AA, DOPAC and UA are 5 µM, 3 µM and 0.6 µM, respectively.  相似文献   

11.
Nanocrystalline metallosilicate modified glassy carbon electrodes were fabricated for the simultaneous determination of vitamins. Among these, nanocrystalline zirconosilicate exhibited the highest activity with a linear range from 30 nM–500 µM for riboflavin and 120 nM–600 µM for rutin and pyridoxine. Sensitivity values of 2.8, 1.49, and 1.13 µA/µM cm2 and lower detection limits of 5 nM, 30 nM, and 30 nM for riboflavin, rutin, and pyridoxine, respectively, were found. The proposed sensor is stable and reproducible (RSD<3.5 %). The analytical performance of this sensor was demonstrated in the pharmaceutical preparations (multivitamin tablets) with satisfactory recovery (97–103 %).  相似文献   

12.
《Analytical letters》2012,45(12):2405-2415
Abstract

A simple and sensitive high‐performance liquid chromatography method was developed for the simultaneous quantitative determination of fluvoxamine and its two metabolites, fluvoxamino alcohol and fluvoxamino acid, in human liver microsomes. Chromatographic separation was achieved with a Grand‐pak C4‐5 column using a mobile phase at pH 2.5 of 0.5% KH2PO4‐acetonitrile (75:25, v/v). Analysis involved a solid‐phase extraction with an Oasis HLB cartridge, which gave high extraction recovery (>92.8%) with good selectivity. The lower limit of quantification of this assay was 78.6 nM for fluvoxamine and fluvoxamino acid, and 82.2 nM for fluvoxamino alcohol, respectively. The coefficient of variation of intra‐ and interday assays was less than 5.8% and accuracy was within 5.3% for all analytes (concentration range 78.6 nM–2.36 µM for fluvoxamine and fluvoxamino acid, and 82.2 nM–2.47 µM for fluvoxamino alcohol, respectively). This method is applicable for accurate and simultaneous determination of oxidative metabolites of fluvoxamine by human liver microsomes.  相似文献   

13.
Abstract

Ethyl 4-substituted-3-oxo-quinoxaline-2-carboxylates 3–5 were obtained via alkylation of ethyl 3-oxo-3,4-dihydroquinoxaline-2-carboxylate (1). Compound 1 was heterocyclized using hydrazines, ethylenediamine, and ethanolamine to give pyrazoloquinoxalines 6, 7, diazepinoquinoxaline 8, and oxazepinoquinoxaline 10. The quinoxaline-2-carboxamides 9, 11, 12 were prepared via condensation of compound 1 with different amines. Compound 1 was thiated using Lawesson’s reagent affording quinoxaline-3-thione 13, in fair yield. In addition, the reaction of 4-methyl-3-oxoquinoxaline 3 with some binucleophiles led to a series of new oxoquinoxaline derivatives 14–18. The molecular structure of compounds 1, 3, and 9 was confirmed by X-ray crystallography.

The anti-proliferative activity showed that among all the tested compounds, compounds 3, (IC50 2.51?±?3.0, 4.22?±?1.6 and 2.27?±?1.9?µM), 11 (IC50 1.32?±?2.61, 1.41?±?1.23 and 1.18?±?1.91?µM) and 17 (IC50 1.72?±?1.32, 1.85?±?0.94 and 1.92?±?4.83?µM) showed noteworthy anti-proliferative effects against the three cancer cell lines, HCT116, HePG2 and MCF7, respectively, compared to the reference drugs doxorubicin (IC50 1.41?±?0.58, 0.90?±?0.62 and 1.01?±?3.02?µM) and erlotinib (IC50 1.63?±?0.81, 1.57?±?0.62 and 1.49?±?0.54?µM). Compounds 3 (0.899?nM), 11 (0.508?nM) and 17 (0.807) showed strong EGFR inhibitory activity compared to Erlotinib (0.439?nM) and these results are in agreement with the docking study. These results suggest that compounds could probably be promising anticancer agents with EGFR inhibitory activity.  相似文献   

14.
《Analytical letters》2012,45(13):2465-2475
Abstract

A simple HPLC method with ultraviolet detection for simultaneous determination of Mycophenolic acid (MPA), its phenol glucuronide metabolite (MPAG) and acyl‐MPAG (AcMPAG) in human plasma was established. The plasma samples were prepared with protein‐preciptaing reagent, and the supernatant was eluted on Zorbax column (250 mm×4.6 mm i.d, 5 µm) with 20 mmol/l NaH2PO4 buffer (pH 3.0, adjusted with 20% phosphoric acid) and methanol (45:55, v/v) at 304 nm. The column temperature was 45°C, and the flow rate was 1.2 ml/min. The assay was linear within the range of 0.2–50 µg/L for MPA (r=0.9997), 2.8–531 µg/L for MPAG (r=0.9999), and 0.3–24 µg/L for AcMPAG (r=0.9994). Mean absolute recovery of MPA and its metabolites and internal standard was >80%. The average recoveries of MPA, MPAG, and AcMPAG were 94.0–101.4, 98.4–101.9, and 96.1–104.2%, respectively. The RSD of within‐day and between‐day were all lower than 15%. The method described is sensitive, reproducible, and will be useful in TDM or pharmacokinetic studies of MPA.  相似文献   

15.
The simultaneous electrochemical detection of homocysteine and cysteine using an absorbed ortho‐quinone species, catechol, at the nanocarbon modified glassy carbon electrode was achieved via 1,4‐Michael addition reaction. The detection was done in the presence and the absence of each other as well as with both glutathione and ascorbic acid present in order to investigate the selectivity of homocysteine and cysteine. A determination of homocysteine sensitivity is (0.882±0.296) nA nM?1 with a LOD of ca. 11 nM and cysteine sensitivity is (7.501±0.202) mA µM?1 with a LOD of ca. 5.0 µM within a range of 0–0.1 mM.  相似文献   

16.
In this work, an electrochemical sensor based on a cyclodextrin‐graphene hybrid nanosheets modified glassy carbon electrode (CD‐GNs/GCE) was proposed for the ultrasensitive determination of doxorubicin and methotrexate. The peak currents of doxorubicin and methotrexate on the CD‐GNs/GCE increased 26.5 and 23.7 fold, respectively, compared to the results obtained on the bare GCE. Under optimized conditions, the linear response ranges for doxorubicin and methotrexate are 10 nM–0.2 µM and 0.1 µM–1.0 µM, with detection limits of 0.1 nM and 20 nM, respectively. The sensor showed the advantages of simple preparation, low cost, high sensitivity, good stability and reproducibility. These properties make the prepared sensor a promising tool for the determination of trace amounts of doxorubicin and methotrexate in biological, clinical and pharmaceutical fields.  相似文献   

17.
A modified electrode was prepared using electrodeposition methods to immobilize caffeic acid (CAF) onto the surface of a glassy carbon electrode (GCE) to create a polymer suitable for biosensor development. The polymer film coverage of the surface bound species was further optimized using electrodeposition methods, thus increasing the surface coverage to ca. 10?9 mol cm?2. Using cyclic voltammetry, the modified carbon electrode was used to facilitate and observe the electrocatalytic oxidation of coenzymes such as NADH, cysteine, and glutathione at different concentrations. A calibration curve was determined in each case within the concentration range; 300 nM to 10 mM, with the limits of detection (LOD) of 246 µM, 99 µM, 2.2 µM for NADH, cysteine, and glutathione respectively.  相似文献   

18.
The electrochemical sensing of catechol (CC) on a glassy carbon electrode modified with the ionothermal assisted synthesis of Ag doped TiO2 a nanoparticle has been successfully demonstrated for the first time.Ag doped TiO2 nanoparticles composite modified glassy carbon electrode exhibits higher electrocatalytic activity towards oxidation of catechol than glassy carbon electrode itself. The modified electrode also exhibits high selectivity towards this analyte in the presence of some of the metal ions and some of the biological compounds. Linear ranges and the limit of detections with the above electrode are 1–15 µM and 0.0249 µM respectively. The optimized protocol has been utilized for monitoring the catechol in some of the natural samples like apple juice and green tea and in industrial effluents.  相似文献   

19.
A sensitive hydrogen peroxide (H2O2) biosensor was developed based on a reduced graphene oxide|carbon ceramic electrode (RGO|CCE) modified with cadmium sulfide‐hemoglobin (CdS‐Hb). The electron transfer kinetics of Hb were promoted due to the synergetic function of RGO and CdS nanoparticles. The transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) were calculated to be 0.54 and 2.6 s?1, respectively, indicating a great facilitation achieved in the electron transfer between Hb and the electrode surface. The biosensor showed a good linear response to the reduction of H2O2 over the concentration range of 2–240 µM with a detection limit of 0.24 µM (S/N=3) and a sensitivity of 1.056 µA µM?1 cm?2. The high surface coverage of the CdS‐Hb modified RGO|CCE (1.04×10?8 mol cm?2) and a smaller value of the apparent Michaelis? Menten constant (0.24 mM) confirmed excellent loading of Hb and high affinity of the biosensor for hydrogen peroxide.  相似文献   

20.
《Analytical letters》2012,45(11):2203-2216
Abstract

Folic acid was found to inhibit the chemiluminogenic reaction of N‐bromosuccinimide with dichlorofluorescein in alkaline medium. The analyte has also been determined after generation of a fluorescing compound by the action of hexacyanoferrate(III) or N‐bromosuccinimide in alkaline medium. Both procedures were further investigated and an attempt to propose the corresponding mechanisms was also made. The chemiluminogenic procedure allows the determination of folic acid within the range 6.0 to 114 µg/ml with limits of detection and quantification equal to 2.0 and 6.0 µg/ml, respectively and rsd at 11.4 µg/ml equal to 1.0% (n=12) while the fluorogenic procedure allows the determination of folic acid within the range 0.022–1.10 µg/ml with limits of detection and quantification equal to 0.002 and 0.005 µg/ml, respectively and rsd at 0.022 µg/ml equal to 0.7 (n=10). The methods are compared and successfully applied to commercial preparations containing folic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号