首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermoelectric materials CoSb3 and LaFe3CoSb12 with skutterudite structure were subjected to high pressures using a diamond anvil high-pressure cell up to 20 GPa. Energy-dispersive X-ray diffraction was used to determine the dependence of the lattice parameter on pressure. No major change in the X-ray diffraction spectra was observed for both compounds, constituting evidence that both compounds are stable within this pressure range, despite their relatively open structures. Three distinct isothermal equations of state for solids under high pressure were fitted to the experimental data to determine the bulk modulus for both compounds. The filled skutterudite showed a greater compressibility than the unfilled one, this difference can be understood in terms of the larger lattice parameter of the former.  相似文献   

2.
Co4Sb12−xTex compounds were prepared by mechanical alloying combined with cold isostatic pressing, and the effects of Te doping on the thermoelectric properties were studied. The electronic structure of Te-doped and undoped CoSb3 compounds has been calculated using the first-principles plane-wave pseudo-potential based on density functional theory. The experimental and calculated results show that the value of the solution limit x of Te in Co4Sb12−xTex compounds is between 0.5 and 0.7. The Fermi surface of CoSb3 is located between the conduction band and the valence band, and its electrical resistivity decreases with increasing temperature. The density of states is mainly composed of Co 3d and Sb 5p electrons for intrinsic CoSb3.The Fermi surface of Te-doped compounds moves to the conduction band and its electrical resistivity increases with increasing temperature, exhibiting n-type degenerated semiconductor character. Under the conditions of the experiment, the maximum value 2.67 mW/m K2 of the power factor for Co4Sb11.7Te0.3 is obtained at 600 K; this is about 14 times higher than that of CoSb3.  相似文献   

3.
The thermodynamic properties of the spinel ferromagnetic compounds CdCr2Se4 and CdCr2S4 have been investigated by making heat capacity and thermal expansion measurements on single crystals. For both compounds, the ferromagnetic transition is marked by λ-type thermal anomalies, and the results provide a pressure dependence of the transition temperatures that is in agreement with direct measurements. Below the transition, CdCr2S4 shows an anomalous heat-capacity contribution and negative thermal expansion, which are in contrast to the conventional behavior found in CdCr2Se4.  相似文献   

4.
The crystal structure of Na0.75CoO2 was studied at ambient and low temperatures down to 10 K at pressures up to 40 GPa using synchrotron x-rays and a diamond cell in angle dispersion geometry. A reduction in the c/a ratio was observed at both conditions with the application of pressure. An increase in Co–O bond lengths and a decrease in Na–O bond lengths were observed above 10 GPa. The results of the density functional calculations performed agree well with the pressure induced bond length changes. The anomalous change in the c/a ratio and bond lengths indicate a pressure induced isostructural phase transition above 10 GPa. Bulk modulus calculations show this compound is less compressible than its hydrated analogues.  相似文献   

5.
Single crystals of the cobalt skutterudites CoP3, CoAs3 and CoSb3 have been prepared by the chemical vapor transport technique using chlorine as the transport agent. Chemical analysis and density measurements were used to determine accurately the stoichiometry of these crystals. Physical properties of chemically pure single crystals were obtained by X-ray diffraction, magnetic susceptibility and electrical measurements. CoP3 is a diamagnetic semiconductor with an optical band gap of 0.45 eV. CoAs3 and CoSb3 are also diamagnetic and show an increase in their resistivity as a function of increasing temperature. In addition, they do not give any measurable absorption edge but absorb radiation at all frequencies from 0.4 to 4.3 eV.  相似文献   

6.
Temperature dependences of the Hall coefficient, Hall mobility and thermoelectric properties of Ni-doped CoSb3 have been characterized over the temperature range from 20 to 773 K. Ni-doped CoSb3 is an n-type semiconductor and the conduction type changes from n-type to p-type at around 450 K. The temperature for the transition from n-type to p-type increased with increasing Ni content x. The Seebeck coefficient reaches a maximum value near the transition temperature. The electrical resistivity indicates that Co1−xNixSb3 is a typical semiconductor when x≤0.03 and a degenerate semiconductor when x>0.03. Thermal conductivity analyses show that the lattice component is predominant at lower temperatures and carrier and bipolar components become large at temperatures higher than the transition temperature. The thermoelectric figure of merit reaches a maximum value close to the transition temperature and the largest value, 4.67×10−4 K−1 at 600 K, was obtained for x=0.05.  相似文献   

7.
Impedance spectroscopy measurements and synchrotron X-ray diffraction studies of Sc2(WO4)3 at 400°C have been carried out as a function of pressure up to 4.4 GPa. Ionic conductivity shows normal decrease with increase in pressure up to 2.9 GPa, but then increases at higher pressures. The XRD results show that Sc2(WO4)3 undergoes pressure-induced amorphization at pressures coincident with the reversal in conductivity behavior. The loss of crystal structure at high pressure is consistent with growing evidence of pressure-induced amorphization in negative thermal expansion materials, such as Sc2(WO4)3. The increase in conductivity in the amorphized state is interpreted as the result of an increase in structural entropy and a concomitant reduction of energy barriers for ionic transport.  相似文献   

8.
An in situ Raman spectroscopic study was conducted to investigate the pressure induced phase transformation of MgCr2O4 spinel up to pressures of 76.4 GPa. Results indicate that MgCr2O4 spinel undergoes a phase transformation to the CaFe2O4 (or CaTi2O4) structure at 14.2 GPa, and this transition is complete at 30.1 GPa. The coexistence of two phases over a wide range of pressure implies a sluggish transition mechanism. No evidence was observed to support the pressure-induced dissociation of MgCr2O4 at 5.7-18.8 GPa, predicted by the theoretical simulation. This high pressure MgCr2O4 polymorphism remains stable upon release of pressure, but at ambient conditions, it transforms to the spinel phase.  相似文献   

9.
In situ synchrotron X-ray diffraction measurements are carried out on filled skutterudites CeFe4Sb12 and Ce0.8Fe3CoSb12 up to 32 and 20 GPa, respectively, at room temperature. No phase transformation was observed for both samples in the pressure range. Fitting the pressure-volume data (up to 10 GPa) to the third-order Birch-Murnaghan equation of state, the bulk modulus B0 is determined to be 74(4) GPa, with the pressure derivative B0=7(2) for CeFe4Sb12, and B0=71(2) GPa and B0=8(2) for Ce0.8Fe3CoSb12. The bulk moduli of filled skutterudites CeFe4Sb12 and Ce0.8Fe3CoSb12 in our study are smaller than those from previous studies on unfilled skutterudite CoSb3. The P-V curves of the unfilled skutterudite CoSb3 and filled skutterudites CeyFe4−xCoxSb12 showed good agreement, indicating that the Ce filling fraction and the replacement of Fe with Co have little effect on their compression behaviors.  相似文献   

10.
We present first principles calculations of the effect of pressure on the electronic and optical properties of the alkali antimonides semiconductors K3Sb, K2CsSb, KCs2Sb and Cs3Sb by means of the full-potential linearized augmented plane wave method within the generalized gradient approximation. The band gap variation is not linear. The crossover pressure values are determined for K3Sb and K2CsSb. Under pressure the structures in the optical spectra shift towards higher energies for K3Sb and KCs2Sb whereas the threshold energy is lowered for K2CsSb and Cs3Sb. The electronic dielectric constant decreases with pressure for K3Sb while it increases for the other three compounds. Our results indicate that the absorption becomes strong in the UV region for KCs2Sb and Cs3Sb.  相似文献   

11.
The effect of hydrostatic pressure (up to 0.82 GPa) on the electric properties of chain TlGaTe2 single crystals has been investigated in the temperature range 77-296 K. It has been shown that pressure leads to a considerable increase of conductivity (σ) across the chains of TlGaTe2 single crystals. Parameters of localized states in the band gap of TlGaTe2 single crystal according to the low-temperature electrical measurements were obtained at various pressures.  相似文献   

12.
Non-Fermi-liquid behavior and close proximity to a quantum critical point in the 5d transition metal iridate SrIrO3 at ambient pressure motivate our search for possible anomalous behavior in its transport properties under pressure. The electrical resistivity in the ab-plane of a single crystal of SrIrO3 has been measured over the temperature range 1.35–285 K at both ambient and 9.1 kbar hydrostatic pressure. The resistivity decreases slightly over the entire temperature range, but no superconducting transition or changes in the non-Fermi-liquid behavior are observed under pressure. It is estimated that significantly higher pressures are likely required before sizable changes in the properties of SrIrO3 will occur.  相似文献   

13.
Sn-filled CoSb3 skutterudite compounds were synthesized by the induction melting process. Formation of a single δ-phase of the synthesized materials was confirmed by X-ray diffraction analysis. The temperature dependences of the Seebeck coefficient, electrical resistivity and thermal conductivity were examined in the temperature range of 300-700 K. Positive Seebeck and Hall coefficients confirmed p-type conductivity. Electrical resistivity increased with increasing temperature, which shows that the Sn-filled CoSb3 skutterudite is a degenerate semiconductor. The thermal conductivity was reduced by Sn-filling because the filler atoms acted as phonon scattering centers in the skutterudite lattice. The lowest thermal conductivity was achieved in the composition of Sn0.25Co8Sb24.  相似文献   

14.
15.
The temperature and magnetic field dependent local structure of RMn2O5 systems was examined. While no significant displacements of the Mn ions are observed, it is found that the R-O distribution exhibits changes at low temperature which are possibly related to the changes in the electric polarization. Density functional computations are used to explore the system dynamics and to link the local structural measurements with anomalous changes in the infrared absorption spectra. The anomalous R-O distribution and observed coupling to magnetic fields point to the need to properly treat the 4f electrons on the R sites in these systems.  相似文献   

16.
In the present study, nanoferrite of composition Mn0.4Zn0.6In0.5Fe1.5O4 has been synthesized by co-precipitation method. Decomposition of residue at a temperature as low as 200 °C gives the ferrite powder. The ferrite has been, finally, sintered at 500 °C. The structural studies have been made by using X-ray diffraction (XRD) technique and scanning electron microscopy (SEM), which confirm the formation of single spinel phase and nanostructure. The dc resistivity is studied as a function of temperature and values found are more than twice those for the samples prepared by the other chemical methods. It is found that the resistivity decreases with increase in temperature. The initial permeability value is found to be higher as compared to the other chemical routes. The initial permeability value is found to increase with increase in temperature. At a certain temperature called Curie temperature, it attains a maximum value, after which the initial permeability decreases sharply. Even at nanolevel, appreciable value of initial permeability is obtained and low magnetic losses make these ferrites especially suitable for high-frequency applications. The particle size is calculated using Scherrer's equation for Lorentzian peak, which comes out between 35 and 49 nm. Possible mechanisms contributing to these processes have been discussed.  相似文献   

17.
We report the results of an X-ray diffraction study of CdAl2Se4 and of Raman studies of HgAl2Se4 and ZnAl2Se4 at room temperature, and of CdAl2S4 and CdAl2Se4 at 80 K at high pressure. The ambient pressure phase of CdAl2Se4 is stable up to a pressure of 9.1 GPa above which a phase transition to a disordered rock salt phase is observed. A fit of the volume pressure data to a Birch-Murnaghan type equation of state yields a bulk modulus of 52.1 GPa. The relative volume change at the phase transition at ∼9 GPa is about 10%. The analysis of the Raman data of HgAl2Se4 and ZnAl2Se4 reveals a general trend observed for different defect chalcopyrite materials. The line widths of the Raman peaks change at intermediate pressures between 4 and 6 GPa as an indication of the pressure induced two stage order-disorder transition observed in these materials. In addition, we include results of a low temperature Raman study of CdAl2S4 and CdAl2Se4, which shows a very weak temperature dependence of the Raman-active phonon modes.  相似文献   

18.
The 4f→ 5d electronic phase transition in SmS has been studied using thermoelectric power as a probe. The variation of thermopower with pressure in Sm0.84Gd0.16S and in the high pressure phase of SmS is anomalous, characterized by a rather large pressure coefficient. The temperature coefficient of thermopower in Sm0.84Gd0.16S is large and negative at low pressures leading to a change of sign at higher temperatures. The anomalies can be understood on the basis of the ICF model.  相似文献   

19.
The novel filled skutterudite materials have attracted much interest in recent years and experimental studies have revealed that electrical properties (electrical conductivity and Seebeck coefficient) in these materials are dominated by their electronic structure while the effective suppression of thermal conductivity is mainly determined by their lattice dynamics. To clarify the relationship between microstructure and properties in further, we report a systematic study of electronic structures and lattice dynamics of CoSb3 in this paper using linearized augmented plane waves based on the density functional theory of first principles. By calculating band structure and partial density of states (PDOS), effects of electronic structures of CoSb3 on electrical properties were investigated. Based on the calculated results of phonon dispersions and phonon density of states of CoSb3, lattice dynamics of CoSb3 (heat capacity, Debye temperature, mean free path and lattice thermal conductivity) are discussed in detail. The calculated results are excellently consistent with other work and experimental data.  相似文献   

20.
A short survey has been made on the extensive work that is being done on the pressure derivatives of the second order elastic constants (SOEC) to ascertain various properties of substances. Hence an attempt has been made to correlate the pressure derivatives to some properties of the substances. Thus some equations have been derived to correlate the Grüneisen parameter which is evaluated from Schofield's equations and Bhatia-Singh's (BS) parameters. They have been used to compute the longitudinal (γgL) and transverse (γgT) Grüneisen constants. γgL calculated by different methods agree well with experiment. γgT obtained from BS parameters gives rather higher value while Schofield's equations give results in agreement with experiment. The DeLaunay-Nath-Smith (DNS) equation has been used to derive a relation to compute γgel (elastic). A method has been extended to calculate the third order elastic constants (TOEC) and it is found to give excellent values of TOECs in agreement with experiment. The absorption band position of TeO2 has been predicted to occur at 276 cm−1. The phonon dispersion curves have been calculated through BS equations for TeO2. Several other properties of TeO2 have been computed such as thermal Grüneisen parameter γgth, its pressure derivatives (γgth)′≡(dγgth/dP), the pressure variation of bulk modulus C1≡(dKT/dP)T and its pressure derivatives that is (dC1/dP)T which is in turn related to (γgth)′, the heat capacity at constant volume CV, and the second Grüneisen constant Q. In some cases we calculated these quantities by different methods and the agreement between them is good. Besides we evaluated δTAG the Anderson Grüneisen parameter. Another important aspect of the present investigations is the formulation of the potential function (PF) of TeO2 from which we calculated SOECs and these are found to be in excellent agreement with experiment. All other properties mentioned already have also been calculated through the use of the newly formulated PF and the calculated values obtained through various other equations are in good agreement with those obtained from PF. According to valence force field (VFF) all atomic forces can be resolved into bond bending β and bond stretching α forces. It is shown that TeO2 does not satisfy Martins unity rule. Hence it is concluded that there is an effective dynamic charge on Te in TeO2. Using the experimental elastic constants the bond bending force β and bond stretching force α and also their pressure derivatives have been evaluated. In addition the reststrauhlen optic frequency ω has been calculated. A self consistent check has been made by evaluating C44 through the calculated values of α and β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号