首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Electrical conduction and crystal structure of Al2(WO4)3 at 400 °C have been studied as a function of pressure up to 5.5 GPa using impedance methods and synchrotron radiation X-ray diffraction, respectively. AC impedance spectroscopy and DC polarization measurements reveal an ionic to electronic dominant transition in electrical conductivity at a pressure as low as 0.9 GPa. Conductivity increases with pressure and reaches a maximum at 4.0 GPa, where the conductivity value is 5 orders of magnitude greater than the 1 atm value. Upon decompression, the conductivity retains the maximum value until the sample is cooled at 0.5 GPa. The high pressure-temperature X-ray diffraction results show that the lattice parameters decrease as pressure increases and the crystal structure undergoes an orthorhombic to tetragonal-like transformation at a pressure ∼3.0 GPa. The change of conduction mechanism from ionic to electronic may be explained by means of pressure-induced valence change of W6+→W5+, which results in electron transfer between W5+-W6+ sites at high pressure.  相似文献   

2.
The effect of pressure on the phase transformations in Sm2(MoO4)3, Gd2(MoO4)3 and Eu2(MoO4)3 crystals has been studied in situ using synchrotron radiation. All three isostructural compounds undergo a structural phase transition at 2.2-2.8 GPa to a new phase, which is interpreted as a possible precursor of amorphization. Amorphization in these crystals occurs irreversibly over a wide pressure range, and its mechanism, interpreted as a chemical decomposition, is found to be weakly affected by the degree of hydrostaticity.  相似文献   

3.
An in situ Raman spectroscopic study was conducted to investigate the pressure induced phase transformation of MgCr2O4 spinel up to pressures of 76.4 GPa. Results indicate that MgCr2O4 spinel undergoes a phase transformation to the CaFe2O4 (or CaTi2O4) structure at 14.2 GPa, and this transition is complete at 30.1 GPa. The coexistence of two phases over a wide range of pressure implies a sluggish transition mechanism. No evidence was observed to support the pressure-induced dissociation of MgCr2O4 at 5.7-18.8 GPa, predicted by the theoretical simulation. This high pressure MgCr2O4 polymorphism remains stable upon release of pressure, but at ambient conditions, it transforms to the spinel phase.  相似文献   

4.
We investigated the behavior of the structure of titanium hydride (TiH2), an important compound in hydrogen storage research, at elevated temperatures (0-120 °C) and high pressures (1 bar-34 GPa). Temperature-induced changes of TiH2 as indicated in the alteration of the ambient X-ray demonstrated a cubic to tetragonal phase transition occurring at about 17 °C. The main focus of this study was to identify any pressure-induced structural transformations, including possible phase transitions, in TiH2. Synchrotron X-ray diffraction studies were carried out in situ (diamond anvil cell) in a compression sequence up to 34 GPa and in subsequent decompression to ambient pressure. The pressure evolution of the diffraction patterns revealed a cubic (Fm-3m) to tetragonal (I4/mmm) phase transition at 2.2 GPa. The high-pressure phase persisted up to 34 GPa. After decompression to ambient conditions the observed phase transition was completely reversible. A Birch-Murnaghan fit of the unit cell volume as a function of pressure yielded a zero-pressure bulk modulus K0=146(14) GPa, and its pressure derivative K0=6(1) for the high-pressure tetragonal phase of TiH2.  相似文献   

5.
Measurements of the electrical conductivity were performed in KHSO4 at pressures between 0.5 and 2.5 GPa and in the temperature range 120-350 °C by the use of the impedance spectroscopy. The temperatures of the α-β phase transition (TTr) and of the melting (Tm), determined from the Arrhenius plots ln(σT) vs. 1/T, increase with pressure up to 1.5 GPa having dT/dP∼+45 K/GPa. Above the pressure 1.5 GPa, the pressure dependencies of TTr and Tm are negative dT/dP∼−45 K/GPa. At pressures above 0.5 GPa, the reversible decomposition of KHSO4 into K3H(SO4)2+H2SO4 (and probably into K5H3(SO4)4+H2SO4) affects the electrical conductivity of KHSO4, with the typical values of the protonic electrical conductivity, c. 10−1 S/cm at 2.5 GPa.  相似文献   

6.
The intrinsic formation of polyatomic defects in Sc2(WO4)3-type structures is studied by Mott Littleton calculations and Molecular Dynamics simulations. Defects involving the WO42− tetrahedron are found to be energetically favorable when compared to isolated W and O defects. WO42− Frenkel and (2Sc3+, 3WO42−) Schottky defects exhibit formation energies of 1.23 eV and 1.97 eV, respectively and therefore may occur as intrinsic defects in Sc2(WO4)3 at elevated temperatures. WO42− vacancy and interstitial migration processes have been simulated by classical Molecular Dynamics simulations. The interstitial defect exhibits a nearly 10 times higher mobility (with a migration energy of 0.68 eV), than the vacancy mechanism (with a slightly higher migration energy of 0.74 eV) and thus should dominate the overall ionic conduction. Still both models reproduce the experimental activation energy (0.67 eV) nearly within experimental uncertainty.  相似文献   

7.
The high-pressure behavior of rhenium disulfide (ReS2) has been investigated to 51.0 GPa by in situ synchrotron X-ray diffraction in a diamond anvil cell at room temperature. The results demonstrate that the ReS2 triclinic phase is stable up to 11.3 GPa, at which pressure the ReS2 transforms to a new high-pressure phase, which is tentatively identified with a hexagonal lattice in space group P6?m2. The high-pressure phase is stable up to the highest pressure in this study (51.0 GPa) and not quenchable upon decompression to ambient pressure. The compressibility of the triclinic phase exhibits anisotropy, meaning that it is more compressive along interlayer directions than intralayer directions, which demonstrates the properties of the weak interlayer van der Waals interactions and the strong intralayer covalent bonds. The largest change in the unit cell angles with increasing pressures is the increase of β, which indicates a rotation of the sulfur atoms around the rhenium atoms during the compression. Fitting the experimental data of the triclinic phase to the third-order Birch-Murnaghan EOS yields a bulk modulus of KOT=23±4 GPa with its pressure derivative KOT′= 29±8, and the second-order yields KOT=49±3 GPa.  相似文献   

8.
Nuclear magnetic resonance (NMR) on 63Cu nuclei was performed in a pressure-induced superconductor Sr2Ca12Cu24O41 at an optimum pressure of 3.8 GPa. A pressure of 3.8 GPa was achieved by improving a piston-cylinder-type pressure cell and developing a NMR probe with a steady-load control system. We found that the spin gap still exists even at the optimum pressure. The spin gap was almost the same at pressures below 3.5 GPa on the pressure-temperature phase diagram, whereas it decreased rather drastically above 3.5 GPa.  相似文献   

9.
The compression behavior of nanoscale Zr-doped anatase was studied by means of a diamond anvil cell experiment with alternating cycles of compression and decompression in the stability field of anatase (up to 13 GPa). We found that multiple cycles of compression lead to stiffening of the material: Precompressed samples of nanoanatase Ti0.9Zr0.1O2 have a higher bulk modulus (K0=249(9) and 266(6) GPa) compared with the sample when compressed for the first time (K0=211(7) GPa). Upon compression, the crystallite size remains the same and the crystalline areas are free of defects. After the experiment, the crystallites are surrounded by amorphous rims, confirming the theoretical prediction by Pischedda et al. [Ultrastability and enhanced stiffness of similar to 6 nm TiO2 nanoanatase and eventual pressure-induced disorder on the nanometer scale, Phys. Rev. Let. 96 (2006) 035509] for nanoscale anatase, but yielding much lower pressures (12 GPa) for the onset of partial amorphization.  相似文献   

10.
A laser-heated sample in a diamond anvil cell and synchrotron X-ray radiation was used to carry out structural characterization of the phase transformation of Fe2O3 at high pressures (30-96 GPa) and high temperature. The Rh2O3(II) (or orthorhombic perovskite) structure transforms to a new phase, which exhibits X-ray diffraction data that are indicative of a CaIrO3-type structure. The CaIrO3-type structure exhibited an orthorhombic symmetry (space group: Cmcm) that was stable at temperatures of 1200-2800 K and pressure of 96 GPa (the highest pressure used). Unambiguous assignment of such a structure requires experimental evidence for the presence of two Fe species. Based on the equation of state of gold, the phase boundary of the CaIrO3-type phase transformation was P (GPa)=59+0.0022×(T−1200) (K).  相似文献   

11.
The effect of hydrostatic pressure (up to 0.82 GPa) on the electric properties of chain TlGaTe2 single crystals has been investigated in the temperature range 77-296 K. It has been shown that pressure leads to a considerable increase of conductivity (σ) across the chains of TlGaTe2 single crystals. Parameters of localized states in the band gap of TlGaTe2 single crystal according to the low-temperature electrical measurements were obtained at various pressures.  相似文献   

12.
By using diamond anvil cell (DAC), high-pressure Raman spectroscopic studies of orthophosphates Ba3(PO4)2 and Sr3(PO4)2 were carried out up to 30.7 and 30.1 GPa, respectively. No pressure-induced phase transition was found in the studies. A methanol:ethanol:water (16:3:1) mixture was used as pressure medium in DAC, which is expected to exhibit nearly hydrostatic behavior up to about 14.4 GPa at room temperature. The behaviors of the phosphate modes in Ba3(PO4)2 and Sr3(PO4)2 below 14.4 GPa were quantitatively analyzed. The Raman shift of all modes increased linearly and continuously with pressure in Ba3(PO4)2 and Sr3(PO4)2. The pressure coefficients of the phosphate modes in Ba3(PO4)2 range from 2.8179 to 3.4186 cm−1 GPa−1 for ν3, 2.9609 cm−1 GPa−1 for ν1, from 0.9855 to 1.8085 cm−1 GPa−1 for ν4, and 1.4330 cm−1 GPa−1 for ν2, and the pressure coefficients of the phosphate modes in Sr3(PO4)2 range from 3.4247 to 4.3765 cm−1 GPa−1 for ν3, 3.7808 cm−1 GPa−1 for ν1, from 1.1005 to 1.9244 cm−1 GPa−1 for ν4, and 1.5647 cm−1 GPa−1 for ν2.  相似文献   

13.
Nano-crystallites of Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 NASICON type material are prepared by means of solid-state reaction of a stoichiometric mixture after milling it for 22 and 55 h. The milling reduces the average crystallite size of the ceramic to 80 and 60 nm, respectively. Mechanical milling changes structural parameters and the strain induced at the grain-boundaries plays a major role in improving electrical conductivity. An order of magnitude increase in electrical conductivity is observed in the material milled for 55 h compared to the unmilled material, which is also reflected in permittivity loss. Modulus and permittivity representations substantiate the constriction effect of grain-boundaries observed in the complex impedance representation.  相似文献   

14.
Transport properties (resistivity, thermal conductivity, and Seebeck coefficient) and sound velocities have been determined for the skutterudite Ce0.8Fe3CoSb12.1 with pressure up to 14 GPa. From these measurements, high pressure anomalous features were found in all transport properties. By correlating these with results from previous x-ray work, it has been determined that there is likely an electronic topological transition in this material induced by pressure. This is possibly due to the known pressure variation of valence in the void-filling Ce atom and has been found to induce an improved figure of merit at higher pressures, which shows a nearly two-fold increase with applied pressure. At higher pressures, it was determined that this anomalous behavior is suppressed and is possibly induced by insertion of Sb from the cage into the remaining central voids of the structure, similar to that seen in the CoSb3 parent compound.  相似文献   

15.
The high pressure properties of icosahedral boron arsenide (B12As2) were studied by in situ X-ray diffraction measurements at pressures up to 25.5 GPa at room temperature. B12As2 retains its rhombohedral structure; no phase transition was observed in the pressure range. The bulk modulus was determined to be 216 GPa with the pressure derivative 2.2. Anisotropy was observed in the compressibility of B12As2c-axis was 16.2% more compressible than a-axis. The boron icosahedron plays a dominant role in the compressibility of boron-rich compounds.  相似文献   

16.
Phase transitions in CsHSO4 at pressures up to 2.5 GPa have been studied with the help of electrical impedance measurements. The phase boundaries have been identified with the help of calculated activation energies of electrical conductivity and dielectric relaxation time. The derived temperatures of phase transition from the low conductive phase II into super ionic phase I at pressure less than 1 GPa confirm the previous results of Ponyatovski? et al. (1985) [4] and Friesel et al. (1989) [27]. The phase diagram derived in this study for pressure larger than 1 GPa differs from the data of Ponyatovski? et al. (1985) [4]. The phase transitions IV-VI and VI-I occur at higher temperatures having significantly larger Clapeyron slope. The phase VII was not identified from heating cycle and appears only under cooling between phases I and VI. The phase VIII was detected at 2.5 GPa at T<350 K and only during heating.  相似文献   

17.
18.
We report the results of an X-ray diffraction study of CdAl2Se4 and of Raman studies of HgAl2Se4 and ZnAl2Se4 at room temperature, and of CdAl2S4 and CdAl2Se4 at 80 K at high pressure. The ambient pressure phase of CdAl2Se4 is stable up to a pressure of 9.1 GPa above which a phase transition to a disordered rock salt phase is observed. A fit of the volume pressure data to a Birch-Murnaghan type equation of state yields a bulk modulus of 52.1 GPa. The relative volume change at the phase transition at ∼9 GPa is about 10%. The analysis of the Raman data of HgAl2Se4 and ZnAl2Se4 reveals a general trend observed for different defect chalcopyrite materials. The line widths of the Raman peaks change at intermediate pressures between 4 and 6 GPa as an indication of the pressure induced two stage order-disorder transition observed in these materials. In addition, we include results of a low temperature Raman study of CdAl2S4 and CdAl2Se4, which shows a very weak temperature dependence of the Raman-active phonon modes.  相似文献   

19.
Results of X-ray diffraction, electrical resistance, thermoelectric power measurements and electronic band structure calculations on NiSi2 under high pressure are reported. The thermoelectric power (TEP) changes sign near 0.5 GPa (from +30 to −20 μV/K). As the pressure is increased, the value of TEP increases further in magnitude and near 7 GPa it becomes −50 μV/K. The pressure vs. resistance curve measured up to 30 GPa using diamond anvil (DAC)-based technique exhibits a broad hump near 12 GPa and exhibits hysteresis on pressure release. The ADXRD patterns up to 42 GPa show a gradual irreversible loss of long-range order in NiSi2 with the diffraction lines progressively broadening under pressure. The FWHM of the diffraction lines show a rapid increase in the half-widths close to 0.5 GPa and also near 12 GPa. The computed band structure at a compression (without any disorder) corresponding to 12 GPa, exhibits an electronic topological transition (ETT). The rapid increase in disorder above 12 GPa implies that the ETT may be facilitating the structural disorder. It is suggested that the pressure drives the material through a region of entropic and energetic barriers and induces disorder in the material.  相似文献   

20.
Structural mechanisms of densification of a molecular chalcogenide glass of composition Ge2.5As51.25S46.25 have been studied in situ at pressures ranging from 1 atm to 11 GPa at ambient temperature as well as ex situ on a sample quenched from 12 GPa and ambient temperature using high-energy X-ray diffraction. The X-ray structure factors display a reduction in height of the first sharp diffraction peak and a growth of the principal diffraction peak with a concomitant shift to higher Q-values with increasing pressure. At low pressures of at least up to 5 GPa the densification of the structure primarily involves an increase in the packing of the As4S3 molecules. At higher pressures the As4S3 molecules break up and reconnect to form a high-density network with increased extended-range ordering at the highest pressure of 11 GPa indicating a structural transition. This high-density network structure relaxes only slightly on decompression indicating that the pressure-induced structural changes are quenchable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号