首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of oxygen/cobalt off-stoichiometry upon magnetism in CaBaCo4O7 has been investigated. It is shown that the oxides CaBaCo4O7+δ and CaBaCo4−xO7−δ (0≤x≤0.20) synthesized below 1100 °C in air exhibit phase separation, where ferrimagnetic regions with TC~56 K to 64 K coexist with regions of magnetic clusters. The latter are detected from ac-susceptibility measurements, which show various frequency dependent peaks at ~14–20 K, 37 K, and 45 K, depending on the stoichiometry. The origin of this phenomenon is attributed to the great sensitivity of the material to oxidation as the synthesis of temperature is lowered, leading to the introduction of additional Co3+ cations, with respect to the ideal formula CaBaCo22+Co23+O7. This excess Co3+ tends to destroy the ferromagnetic zig-zag chains of the ferrimagnetic structure and creates various cobalt spin clusters, leading to the inherent phase separation in the samples.  相似文献   

2.
The authors report the fabrication of ZnO-based metal-oxide-semiconductor field effect transistors (MOSFETs) with a high quality SiO2 gate dielectric by photochemical vapor deposition (photo-CVD) on a sapphire substrate. Compared with ZnO-based metal-semiconductor FETs (MESFETs), it was found that the gate leakage current was decreased to more than two orders of magnitude by inserting the photo-CVD SiO2 gate dielectric between ZnO and gate metal. Besides, it was also found that the fabricated ZnO MOSFETs can achieve normal operation of FET, even operated at 150 °C. This could be attributed to the high quality of photo-CVD SiO2 layer. With a 2 μm gate length, the saturated Ids and maximum transconductance (Gm) were 61.1 mA/mm and 10.2 mS/mm for ZnO-based MOSFETs measured at room temperature, while 45.7 mA/mm and 7.67 mS/mm for that measured at 150 °C, respectively.  相似文献   

3.
Dilithium zirconium hexafluoride, Li2ZrF6 (, Z=1), is studied at high pressures using synchrotron angle-dispersive X-ray powder diffraction in a diamond anvil cell at room temperature. At atmospheric conditions, it has a structure with all the cations octahedrally coordinated to fluorine atoms. Above 10 GPa it transforms reversibly to a new polymorph (C2/c, Z=4), in which the coordination polyhedron of the Zr atoms is a distorted square antiprism, while the Li atoms are in the octahedral coordination. The LiF6 octahedra form layers parallel to (100) that are connected by zig-zag chains of the edge-sharing Zr polyhedra running in the [001] direction. The relative change in volumes per one formula unit for both polymorphs is 6% at 11.8 GPa. The relations to other A2BX6-type structures are discussed.  相似文献   

4.
5.
The general expressions for the compliance , Young's modulus E(h k l) and Poisson's ratio υ(h k lθ) along arbitrary loading direction [h k l] are given for cubic crystals. The representation surface for which the length of the radius vector in the [h k l] direction equals to E(h k l) and representation curve for which the length of the radius vector with angle θ deviated from the reference directions , and equals to υ(100, θ), υ(110, θ) and υ(111, θ) for example, are constructed for six FCC metals Ag, Al, Au, Cu, Ni, Pb and seven BCC metals Cr, Fe, Mo, Nb, Ta, V, W.  相似文献   

6.
Magnetic susceptibility and electrical resistivity of α-Gd2S3 with an orthorhombic structure (space group: Pnma) have been measured for powder and single-crystal samples. While the magnetic susceptibility of powder sample exhibits a broad peak having a maximum at 4.2 K, the susceptibility for a single crystal with an applied magnetic field along the b-axis demonstrates a sharp drop below 10 K. Nevertheless, the susceptibility with the field perpendicular to the b-axis keeps increasing with decreasing temperature even below 10 K. The electrical resistivity ρ for the powder sample of 4.2×103 Ω cm around room temperature increases with decreasing temperature and shows a slight discontinuity at about 65 K. In both regions above and below 65 K, is proportional to T−1/4 with respective coefficients, which is associated with Mott variable-range hopping conductivity. The resistivity of a single crystal along the b-axis is considerably smaller than the value for the powder sample as 0.35 Ω cm at room temperature, and its temperature dependence is fairly weak. While cooling, the resistivity first decreases down to 240 K and then keeps the value independent of the temperature down to 140 K, and subsequently rises gently below 140 K.  相似文献   

7.
Cu(im)6 complexes in Zn(im)6Cl2·4H2O exhibit a strong Jahn-Teller effect which is static below 100 K and the complex in localized in the two low-energy potential wells. We have reinvestigated electron paramagnetic resonance (EPR) spectra in the temperature range 4.2-300 K and determined the deformation directions produced by the Jahn-Teller effect, energy difference 11 cm−1 between the wells and energy 300 cm−1 of the third potential well. The electron spin relaxation was measured by electron spin echo (ESE) method in the temperature range of 4.2-45 K for single crystal and powder samples. The spin-lattice relaxation is dominated by a local mode of vibration with energy 11 cm−1 at low temperatures. We suppose that this mode is due to reorientations (jumps) of the Cu(im)6 complex between the two lowest energy potential wells. At intermediate temperatures (15-35 K), the T1 relaxation is determined by the two-phonon Raman processes in acoustic phonon spectrum with Debye temperature ΘD=167 K, whereas at higher temperatures the relaxation is governed by the optical phonon of energy 266 cm−1. The ESE dephasing is produced by an instantaneous diffusion below 15 K with the temperature-independent phase memory time , then it grows exponentially with temperature with an activation energy of 97 cm−1. This is the energy of the first excited vibronic level. The thermal population of this level leads to a transition from anisotropic to isotropic EPR spectrum observed around 90 K. FT-ESE gives ESEEM spectrum dominated by quadrupole peaks from non-coordinating 14N atom of the imidazole rings and the peak from double quantum transition νdq. We show that the amplitude of the νdq transition can be used to determine the number of non-coordinating nitrogen atoms.  相似文献   

8.
Phase transitions of tetra(isopropylammonium)decachlorotricadmate(II) [(CH3)2CHNH3]4Cd3Cl10 crystal have been studied by infrared, far infrared and Raman measurements in wide temperature range, between 11 K and 388 K. The temperature changes of wavenumber, center of gravity, width and intensity of the bands were analyzed to clarify cationic and anionic contributions to the phase transitions mechanism. The results of investigation showed earlier by differential scanning calorimetry (DSC), thermal expansion and dielectric measurements clearly confirmed the sequence of phase transitions at T1=353 K, T2=294 K and T3=260 K. The current results derived from DSC and infrared measurements revealed additional phase transition at T4=120 K.  相似文献   

9.
The temperature dependences of DC electrical resistivity for perovskite-type oxides Y1−xCaxCoO3 (0?x?0.1), prepared by sol-gel process, were investigated in the temperature range from 20 K up to 305 K. The results indicated that with increase of doping content of Ca the resistivity of Y1−xCaxCoO3 decreased remarkably, which was found to be caused mainly by increase of carrier (hole) concentration. In the whole temperature range investigated the temperature dependence of resistivity ρ(T) for the un-doped (x=0) sample decreased exponentially with decreasing temperature (i.e. ln ρ∝1/T), with a conduction activation energy ; the resisitivity of lightly doped oxide (x=0.01) possessed a similar temperature behavior but has a reduced Ea (0.155 eV). Moreover, experiments showed that the relationship ln ρ∝1/T existed only in high-temperature regime for the heavily doped samples (T?82 and ∼89 K for x=0.05 and 0.1, respectively); at low temperatures Mott's ln ρT−1/4 law was observed, indicating that heavy doping produced strong random potential, which led to formation of considerable localized states. By fitting of the experimental data to Mott's T−1/4 law, we estimated the density of localized states N(EF) at the Fermi level, which was found to increase with increasing doping content.  相似文献   

10.
We prepared in-situ Au contacts on high-quality epitaxial YBa2Cu3O7 (YBCO) films. Very high specific contact resistivity values up to ∼10−2 Ω cm2 at 4.2 K were obtained on 12×5 μm2 contact areas. This resistivity value decreased by two orders of magnitude as the temperature was raised to room temperature. In the temperature range T<200 K, the contacts showed non-ohmic behavior suggesting the presence of a well-defined insulating native Y-Ba-Cu-O barrier between the two electrodes. The electrical transport in this barrier layer was analyzed in the limit of high temperatures and high voltages to follow Mott's variable-range hopping conduction mechanism with physically reasonable parameters describing the localized states in the barrier. The high-resistivity contacts were tested successfully in quasiparticles injection experiments where the critical current Ic of the YBCO microbridge could be strongly suppressed on injection of an additional current through the contact into the superconducting channel.  相似文献   

11.
The Hall coefficient RH of n-type CuInSe2 single crystals is measured between 10 and 300 K in pulsed magnetic field up to 35 T. The threshold field Bth, above which the magnetic freezeout starts to occur, varies linearly with temperature. From the analysis of the temperature dependence of electron concentration in the activation regime above 100 K at different field values, it is established that the density of states effective mass is independent of the magnetic field B and the activation energy ED, above around 6 T, varies as B1/3. Similar B1/3 dependence of the magnetoresistance in the high magnetic field regime, reported earlier in the same material, suggests that theoretical work that could explain this coincidence is needed.  相似文献   

12.
The optical and electroluminescent properties of 3,4,6-triphenyl-α-pyrone (α-pyrone), a new blue fluoresce dye, are investigated using films prepared by wet and dry process and organic light-emitting diodes (OLEDs) fabricated with an α-pyrone-emitting layer. The optical properties of α-pyrone are found to be affected by its crystallinity. In the fabrication of OLEDs, wet processing (spin coating) is shown to be more suitable for preparation of the α-pyrone layer than dry processing (thermal evaporation). The best device performance is obtained for a device prepared using poly (n-vinylcarbazole) as the dye host, and a bathocuproine/tris-(8-hydroxyquinoline)aluminum bilayer as a hole-blocking and carrier-injection layer. The maximum luminance of this device is 3000 cd/m2 at a current density of 0.2 A/cm2, with a current efficiency of 1.8 cd/A at 0.02 A/cm2.  相似文献   

13.
The conducting oxides solid solutions of Cd1+xIn2−2xSnxO4 (x=0.1, 0.3, 0.5, 0.7, 1.0) were prepared via a solid state reaction method. The band gaps were estimated to be 2.4 eV for x=1.0, 2.5 eV for x=0.7, 2.6 eV for x=0.5, 2.7 eV for x=0.3 and 2.8 eV for x=0.1. Oxygen could be evolved over Cd2SnO4 under the irradiation of Xe-lamp or even visible light (λ>420 nm), while the others could only work in the UV-light range. Raman showed the cation distribution in Cd2SnO4 is ordered, while that in the others is disordered. The cations distribution was proposed to be the cause of the difference in photocatalytic O2-evolution activities.  相似文献   

14.
The trap levels in nominally undoped Ga3InSe4 crystals were investigated in the temperature range of 10-300 K using the thermally stimulated currents technique. The study of trap levels was accomplished by the measurements of current flowing along the c-axis of the crystal. During the experiments we utilized a constant heating rate of 0.8 K/s. Experimental evidence is found for one hole trapping center in the crystal with activation energy of 62 meV. The analysis of the experimental TSC curve gave reasonable results under the model that assumes slow retrapping. The capture cross-section of the trap was determined as 1.0×10−25 cm2 with concentration of 1.4×1017 cm−3.  相似文献   

15.
Heat capacity of two rare-earth orthoferrites HoFeO3 and LuFeO3 were measured between 1.8 and 200 K. A distinctly large and two small heat capacity anomalies were detected for HoFeO3 under zero magnetic field around 3.3, 53 and 58 K, respectively. The low-temperature anomaly with a peak at 3.3 K is due to the ordering of Ho3+ ions and the estimated magnetic entropy for this transition was favorably compared with the expected (R ln 2). Application of magnetic field significantly affects the positions and the magnitudes of the anomaly at 3.3 K. Energies of low-lying levels of the lowest J-term of Ho3+ ion were roughly estimated through analysis of the Schottky heat capacity.  相似文献   

16.
In this article, Sr2CeO4:x mol% Eu3+ and Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors were synthesized from assembling hybrid precursors by wet chemical method. As-prepared samples present uniform grain-like morphology and the particle size is about 0.2 μm. The luminescence spectra of Sr2CeO4:x mol% Eu3+ have been measured to examine the influence of the intensity of red emission lines for Eu3+ on the concentration of Eu3+, showing that the intensity of the red emission increases with an increase of the concentration from 1 to 5 mol%. Additionally, from the emission spectra of Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors, the characteristic lines of Dy3+ have also been observed. This result indicates that there also exists an energy transfer process between Sr2CeO4 and Dy3+.  相似文献   

17.
Thermal and pressure effects have been investigated on the [Fe(sal2-trien)][Ni(dmit)2] spin crossover complex by means of Mössbauer spectroscopic, calorimetric, X-ray diffraction and magnetic susceptibility measurements. The complex displays a complete thermal spin transition between the and spin states of FeIII near 245 K with a hysteresis loop of ca. 30 K. This transition is characterised by a change of the enthalpy, ΔHHL=7 kJ/mol, entropy, ΔSHL=29 J/Kmol, and the unit cell volume, ΔVHL=15.4 Å3. Under hydrostatic pressures up to 5.7 kbar the thermal transition shifts to higher temperatures by ca. 16 K/kbar. Interestingly, at a low applied pressure of 500 bar the hysteresis loop becomes wider (ca. 61 K) and the transition is blocked at ∼50% upon cooling, indicating a possible (irreversible) structural phase transition under pressure.  相似文献   

18.
Resistivity, ρ, of a II-V group semiconductor n-CdSb doped with In is investigated in pulsed magnetic fields up to and at temperatures . The low-temperature resistivity ρ(T) increasing with T in the range of B<4 T is found to have an upturn around B∼4 T and strong activated behavior at further increase of B. These observations give evidence for magnetic-field-induced metal-insulator transition (MIT). In the insulating side of the MIT, Mott variable-range hopping (VRH) conductivity with two types of asymptotic behavior, ln ρ (T, B)∼T−3/4B2 and ln ρ (T, B)∼(B/T)1/3, is established in low and high magnetic fields, respectively. The VRH conductivity is analyzed using a model of the near-edge electron energy spectrum established by investigations of the Hall effect. The VRH conductivity is shown to take place over the band tail states of one out of two impurity bands, which for T=0 and B=0 lie above the conduction band edge.  相似文献   

19.
Ag-network was successfully deposited by VA-EP (vacuum assisted electroless plating) method on Pr1.6Sr0.4NiO4-YSZ cathode to form (1−x) wt% Pr1.6Sr0.4NiO4wt% YSZ-Ag (x=0, 10, 20, 30, 40) (abbr. PYx-Ag) composite cathode. XRD results suggested that there was a good chemical stability between Pr1.6Sr0.4NiO4 and YSZ at temperatures below 1050 °C. PY20-Ag cathode exhibited higher exchange current density, lower overpotential and ASR (Area Specific Resistance) than PY20 cathode. At 650 °C, the ASR of PY20-Ag cathode was 2.5 Ω cm2, which was only about 42% of that of PY20, 5.9 Ω cm2. PY20-Ag can be a promising candidate for SOFC cathode.  相似文献   

20.
The correlations between the electronic polarizability, determined from Clausius-Mosotti equation based on dielectric constant ε, and the lattice energy density u have been established for ANB8-N crystals, such as the systems of rock salt crystals (group I-VII, II-VI) and tetrahedral coordinated crystals (group II-VI, III-V). For the ANB8-N crystals systems, our present conclusions suggest that lattice energy density u decreases exponentially with increasing electronic polarizability, and the normal mathematical expression between lattice energy density u and electronic polarizability is u = q, p and q depend on the type of crystals. For the same cation binary ANB8-N crystals systems, curve fitting equations have been obtained, and the relevant squares of the correlation coefficient R2 are larger than 0.99, which show all lattice energy density u are in good exponential relation with electronic polarizability. These empirical equations will give more information on calculating lattice energy or electronic polarizability. New data of lattice energy have been calculated on the above equation u = q, and a good linear trend in the calculating values along with the Zhang’s values has been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号