首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-assembled three-dimensional (3D) urchin-like and flower-like La(OH)3 nanostructures were successfully prepared for the first time via a facile and fast microwave-assisted solution-phase chemical method in 15 min. The obtained products were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The SEM results reveal that the urchin-like and flower-like La(OH)3 nanostructures are ca. 3 μm and 6 μm in diameter, respectively. The urchin-like La(OH)3 nanostructures are constructed by nanorods with diameters of about 300 nm and lengths of about 500 nm. The flower-like La(OH)3 nanostructures are built from nanopetals about 100 nm thick. The effects of reaction time, microwave power, amount of tetraethyl ammonium bromide (TEAB), and surfactants on the preparation were systematically investigated. The possible formation mechanism of the 3D La(OH)3 nanostructures was preliminarily discussed. Urchin-like and flower-like La2O3 nanostructures were obtained after calcining the La(OH)3 nanostructures at 800 °C for 4 h. Urchin-like and flower-like La2O3:Eu3+ nanostructures were also prepared and their photoluminescence (PL) properties were investigated.  相似文献   

2.
To obviate the brittleness and improve the mechanical properties of poly(tetrahydrofurfuryl methacrylate) (PTHFMA), clay mineral nano-composites of PTHFMA with two different montmorillonites (MMT), Cloisite® 20A and Cloisite® 30B, were prepared. The mechanical properties were investigated by dynamic mechanical analysis (DMA) and nanoindentation. The thermal properties of the nano-composites were studied using thermogravimetric analysis (TGA). According to the DMA results, tanδ was increased by addition of the clay, leading to the improvement in the mechanical properties which was also confirmed by the nanoindentation results. TGA thermograms showed better thermal stability for the nano-composites compared to that of the homopolymer. Considering all results, the clay mineral polymer nano-composites (CPN) with Cloisite® 20A exhibited better properties compared to those with Cloisite® 30B. Transmission electron microscopy (TEM) micrographs, and X-ray diffraction (XRD) patterns validated intercalation-exfoliation of the clay mineral layers for the Cloisite 20A and intercalation of the Cloisite 30B in the polymer matrix.  相似文献   

3.
Poly(lactic acid) (PLA)/halloysite composites were prepared using melt compounding followed by compression molding. Maleic anhydride grafted styrene-ethylene/butylene-styrene (SEBS-g-MAH) was used to toughen the PLA composites. The mechanical properties of the PLA composites were studied through tensile, flexural, and impact tests. The thermal properties were characterized by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The fracture surfaces of the composites were assessed by using field emission scanning electron microscopy (FESEM). The impact strength and thermal properties of the PLA/halloysite composites were increased by addition of SEBS-g-MAH.  相似文献   

4.
Nanorods and nanosheets of tin sulfide (SnS) were synthesized by a novel thioglycolic acid (TGA) assisted hydrothermal process. The as prepared nanostructures were characterized by X-ray diffraction (XRD) study, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD study reveals the formation of well-crystallized orthorhombic structure of SnS. Diameter of the SnS nanorods varied within 30-100 nm. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) patterns identify the single crystalline nature for the SnS nanocrystals. The mechanism for the TGA assisted growth for the nanosheets and nanorods have been discussed.  相似文献   

5.
In this study the blends of polyethylene terephthalate (PET)/ethylene propylene diene rubber (EPDM) in the presence of multi-walled carbon nanotubes (MWCNT) (1 and 3?wt %) were prepared by melt compounding in an internal mixer. Mechanical and morphological properties of the nanocomposites were investigated. The thermal behaviors of the PET/EPDM nanocomposites were also investigated, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of the mechanical tests showed that the tensile strength, elastic modulus and the hardness of the blends were increased with increasing CNT, while the impact strength and elongation at break decreased. The DSC and TGA results showed an increase of melting temperature (Tm) and degradation temperature of the nanocomposites with the addition of the carbon nanotubes, because the carbon nanotubes serve both as nucleating agents to increase Tm and prevent the composite from degradation to increase the thermal stability. The microstructure of the composites was evaluated through field emission scanning electron microscopy (FESEM) and the results showed a good distribution of the MWCNT within the polymer blend.  相似文献   

6.
Nano‐SiO2/epoxy composites cured by Mannich Amine (type T‐31) were prepared and studied and the results are reported in this paper. The nano‐SiO2 was pretreated by a silane coupling agent (type KH‐550) and mixed with epoxy resin (type E‐51) using an ultrasonic processor. Amounts of filler loading ranged from 1% to 5% of the weight of the epoxy resin. Some properties of the resulting composites were characterized by X‐ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results of tensile tests and impact tests showed that the composite with 3% nano‐SiO2 loading presented the best mechanical performances. The tribological performance and thermal stability of the materials were also improved with the addition of nano‐SiO2.  相似文献   

7.
用固相反应法制备(1-x)La0.6Dy0.1Sr0.3MnO3/x/2(Sb2O3)(x=0.00,0.02,0.15)样品,通过X射线衍射(XRD)图谱,扫描电子显微镜(SEM)照片及SEM能谱(EDS),ρ~T曲线研究样品的结构及电输运性质.结果表明:Sb离子没有进入Mn位,Sb2O3包覆在La0.6Dy0.1Sr0.3MnO3颗粒表面,Sb2O3起助熔剂作用,使得复合样品的颗粒变大且大小相对均匀;复合样品的绝缘体-金属转变温度TP较纯的La0.6Dy0.1Sr0.3MnO3的TP提高20K左右,对x=0.15的样品电阻高峰值比纯的La0.6Dy0.1Sr0.3MnO3的峰值电阻率增大两个数量级,用自旋极化隧穿理论予以解释.  相似文献   

8.
The properties of polymer matrix composites are related not only to the chemical composition of the materials but also to the processing equipment used for their preparation which has a direct influence on the microstructure of the composites. In this paper polypropylene (PP)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared by melt blending through a self-developed, eccentric rotor extruder (ERE). The structure and elongational deformation mechanism of an ERE were described in detail. The morphological, rheological, thermal and mechanical properties of the resulting PP/MWCNTs nanocomposites were investigated. Scanning electron microscopy (SEM) and rheological analysis showed that the MWCNTs were well dispersed in the PP matrix. The thermal stability was investigated by thermogravimetric analysis (TGA) and indicated that the addition of MWCNTs could effectively improve the thermal stability of pure PP. The percentage of crystallinity and tensile strength of the composites were improved as a result of the heterogeneous nucleation effect of the MWCNTs in the PP matrix. The research results revealed that the enhancement of the properties of PP/MWCNTs composites could be attributed to a better dispersion of the MWCNTs in the matrix as compared to samples prepared by conventional extrusion.  相似文献   

9.
La(OH)3/Ni(OH)2 nanocables and La(OH)3 nanorods were synthesized by the reaction of KOH with La(NO3)3 and Ni(NO3)2 at 180 °C under a hydrothermal conditions. X-ray diffraction, transmission electron microscopy and thermal analyses indicated that the nanocable consists of La(OH)3 core and Ni(OH)2 outer shell. The diameters of the La(OH)3 nanorods range from 20 to 30 nm and the lengths range from 150 to 1000 nm. The thickness of the Ni(OH)2 coating ranges from 10 to 20 nm. The formation mechanism of the nanocables is discussed.  相似文献   

10.
An amino-functionalized montmorillonite (APTMS-MMT) was prepared by the grafting of 3-aminopropyltrimethoxysilane (APTMS) on the surface of MMT via the ultrasonic synthesis process and characterized by a variety of techniques: FT-IR, thermogravimetic analysis (TGA), particles size analysis and ζ-potential measurement. The results showed the size and size distribution of APTMS-MMT particles were decreased, and the ζ-potential of particles was increased obviously via the ultrasonic synthesis process. The particles of 30% APTMS-MMTUS (MMT modified with 30 wt% APTMS with ultrasonic synthesis process) had a z-average diameter of about 500 nm and a polydispersity index of 0.2. The resultant 30% APTMS-MMTUS was dispersed uniformly and stably in water. The poly(acrylic acid) (PAA)/APTMS-MMT multilayer films were grown through layer-by-layer (LBL) deposition of PAA and APTMS-MMT. SEM results indicated that the ultrasonic synthesis of APTMS-MMT increased dispersability of clay sheets at high loadings. The thermal stability and mechanical properties of PAA/APTMS-MMT composites were investigated by TGA and tensile test respectively. The results showed the ultrasonic synthesis of APTMS-MMT enhanced the thermal stability and mechanical properties of PAA/APTMS-MMT composites significantly. PAA/30% APTMS-MMTUS composite displayed 3 times higher strength and 6 times higher Young's modulus when compared with pure PAA polymer.  相似文献   

11.
Nano-Sb2O3 particles and brominated epoxy resin (BEO) powders were dispersed in poly (butylene terephthalate) (PBT) by high energy ball milling (HEBM). Then the nanocomposites were prepared by a twin screw extruder. The influence of the nano-Sb2O3 particles on the crystallization, thermal stability, flame retardancy and mechanical properties of the PBT/BEO/nano-Sb2O3 composites were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94 tests and scanning electron microscopy (SEM). The results showed that the nano-Sb2O3 particles improved the crystallizability, thermal stability and flame retardancy properties of the PBT/BEO/nano-Sb2O3 composites. When the content of nano-Sb2O3 particles was 2.0?wt%, the LOI of nano-Sb2O3/BEO/PBT composites increased from 22.0 to 27.8 and the tensile strength reached its maximum value (62.44?MPa), which indicated that the optimum value of flame retardancy and mechanical properties of PBT/BEO/nano-Sb2O3 composites were obtained.  相似文献   

12.
Nylon 6,6 micro- and nano-silica composites were prepared by melt processing using a twin-screw extruder. Three nanocomposites containing 4, 8, and 12 wt.% of nanosilica were prepared. In order to compare the effect of size, a microcomposite containing 4 wt.% of micron-size silica was also prepared. The effects of particle type (micro- and nano-size) on the dynamic thermomechanical and rheological properties, morphology, and flame resistance of the composites were examined. The dynamic thermomechanical properties (DMTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic rheometry, thermogravimetry analysis (TGA), and limiting oxygen index (LOI) data are reported. The particles were observed to be dispersed uniformly, but with a different level of coalescence, by means of SEM and TEM. The DMTA results showed that the damping factor peak positions of the nanocomposites at low content of nanofiller shifted more to higher temperature compared to those of nanocomposites containing high concentrations of nanofiller. Dynamic rheometry, using a parallel plate rheometer, showed that the rheological moduli of the nanocomposites increased with increase in nanofiller concentration; however, this increase was greater in the high-frequency region. These results showed that increasing the concentration of nanofiller, and the consequent coalescence effect within the nanocomposites, led to rheological moduli values similar to those of the microcomposite. The TGA and LOI results of the microcomposite and nanocomposite containing 4wt.% of nanosilica showed that nanosilica had a more significant effect to enhance the heat and flame resistance of nylon 6,6 compared to that of micron-sized silica.  相似文献   

13.
Structural distortions arising from the condensations of two essential kinds of phonon modes: the triply degenerate rotational modes (phix, phiy, phiz) of MnO(6) and the doubly degenerate Jahn-Teller active modes (Q1, Q2) have been systematically investigated in the perovskite manganites. Microstructural features associated with certain types of distortions have been observed by transmission electron microscopy (TEM). In RMnO(3) and La(Sr)(2)NiO(4), we characterize the local structure, charge ordered states and orbital ordering by means of low-temperature TEM. We present direct evidence that the stripe modulation in La(Sr)(2)NiO(4) is indeed one-dimensional within each NiO(2) plane. Several typical kinds of defect structures, including antiphase boundaries and the 90 degrees -twin domains, appear commonly in the charge-ordered states.  相似文献   

14.
Polypropylene (PP) composites including various amounts of silica aerogel (SA) microparticles were prepared by melt mixing in an internal mixer. The morphology and microstructure of the prepared composites were investigated by scanning electron microscopy (SEM). Mechanical properties of the samples, including elastic modulus, tensile stress, elongation and stress at break, were measured by tensile tests. In addition, the other mechanical features, including Izod impact strength, hardness and wear resistance, were evaluated and then related to the structure of the PP/SA composites. Furthermore, the thermal characteristics of the composites, such as heat deflection temperature and thermal stability, were studied by thermal gravimetric analysis (TGA). The SEM photographs indicated the satisfactory SA particles dispersion for the compositions of 1% and 3% but agglomeration of the aerogels at higher SA contents. Since the composites became stiffer, the impact and tensile strength decreased. The addition of the SA to the PP matrix yielded harder samples with lower weight loss and coefficients of friction in wear tests. The TGA evaluations confirmed that the presence of SA promoted and upgraded the thermal stability and heat deflection temperature of PP. The thermal results proved the superior potential of PP as an insulator when the SA particles were added.  相似文献   

15.
A reductive hydrothermal process with use of hydrazine hydrate as a protecting agent is proposed to synthesize La(OH)3:Tb3+ (Tb mol% = 0, 1, 5, 10, and 20) nanorods. The oxidation of Tb3+−Tb4+ was effectively prevented in the presence of hydrazine hydrate; hence the La(OH)3:Tb3+ nanorods exhibited much stronger green photoluminescence than the product prepared by the normal hydrothermal process. X-ray diffraction and transmission electron microscopy were employed to characterize the products, the results of which revealed that all the products were one-dimensional rod-like nanostructures of hexagonal structure (∼20 nm in diameter). The reductive hydrothermal process is desirable for the synthesis of other efficient Tb3+ doped nanophosphers.  相似文献   

16.
The surface of α-alumina (Al2O3) nanoparticles was first modified with γ-aminopropyltriethoxy silane as a coupling agent. Then a series of poly(vinyl alcohol)/ surface modified Al2O3 nanocomposite suspensions were prepared in ethanol by a simple ultrasonic irradiation process. Composite films with 5, 10, and 15 wt % of inorganic Al2O3 nanoparticles were achieved after solvent evaporation. The formation of the composite materials were confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and optical transparencies. The FE-SEM and TEM results showed a homogenous dispersion of nanoscale inorganic particles in the poly(vinyl alcohol) matrix. TGA thermographs showed that the thermal stability of the prepared Al2O3-reinforced nanocomposites was improved, increasing with increasing content of the nanoparticles. According to the optical transparencies, the optical clarity of poly(vinyl alcohol)/Al2O3 nanocomposite films was only slightly affected by the presence of the Al2O3 content.  相似文献   

17.
The effects of hydrophobic magnesium hydroxide (Mg(OH)2) particles, prepared by a surface modification method with oleic acid, on the flame-retarding and mechanical properties of polyvinyl chloride (PVC) were investigated. Comparison between the use of modified and unmodified Mg(OH)2 in the preparation of PVC composites showed that the former could provide excellent optical and flame-retarding properties. The dispersion of the modified Mg(OH)2 particles in the PVC matrix was investigated through scanning electron microscopy. Compared with a composite containing unmodified Mg(OH)2, the rheological and impact strength properties of that containing the modified Mg(OH)2 filler were found to be significantly improved. These improvements were mostly attributed to the better dispersion of the modified Mg(OH)2 particles and the strong adhesion between the filler and matrix.  相似文献   

18.
Carbon nano-tube (CNT)- and carbon fiber (CF)-filled polyolefin nano-composites were prepared by melt blending. The water absorption, expansion ratio, electrical conductivities, and physical and mechanical properties of the prepared nano-composites were extensively investigated. The experimental results showed that the water absorption increased with the elapsed time from the starting point when the samples were immersed into the water. The linear expansion ratios of the composites were found to increase gradually with time till reaching an equilibrium value. Composites with excellent dielectric properties could be obtained when the filler content was above the percolation threshold. The addition of CNT and CF resulted in no obvious improvement in mechanical properties in the present study, but both Shore hardness and Vicat softening temperature (VST) of the composites increased with increasing filler content. The present work will be of practical importance to the CNT/CF filler composites design, and optimization of processing variables, as well as the further exploration of the “processing-structure-property” relationship of polyolefin materials.  相似文献   

19.
In this study, polyurethane/titania (PU/TiO2) nanocomposites were prepared in ultrasonic process and characterized by fourier transform IR spectroscopy (FT-IR), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and infrared emissivity analysis. The TEM and SEM results indicated that the nanoparticles were dispersed homogeneously in PU matrix on nanoscale. TGA-DSC confirmed that the heat stability of the composite was improved. Infrared emissivity study showed that the nanocomposite possessed lower emissivity value than those values of pure polymer and nanoparticles.  相似文献   

20.
A series of polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer network (IPN) composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The effects of HTPDMS content on the phase structure, damping properties and the glass transition temperature (Tg) of the HTPDMS-modified PU/EP IPN composites were studied by scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). Thermogravimetric analysis (TGA) showed that the thermal decomposition temperature of the composites increased with the increase of HTPDMS content. The tensile strength and impact strength of the IPN composites were also significantly improved, especially when the HTPDMS content was 10%. The modified IPN composites were expected to be used as structural damping materials in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号