首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative analysis of four different approaches to the notion of phase in quantum optics is carried out in the framework of the Ramsey interferometer scheme, where phase correlation between two spatially separated quantum electromagnetic modes emerges as a consequence of resonant two-level atoms traversing the modes. The measure of correlation is expressed through the dispersion of the inter-mode phase difference cosine. A simple law obtained within a semiclassical approach is used to verify the quantum phase approaches. Somewhat unexpectedly, the definite advantage of the superoperator method by M.Ban is revealed.  相似文献   

2.
高嵩  李洪云  杨光参  林圣路 《中国物理》2007,16(9):2644-2649
A semiclassical method based on the closed-orbit theory is applied to analysing the dynamics of photodetached electron of H$^- $ in the parallel electric and magnetic fields. By simply varying the magnetic field we reveal spatial bifurcations of electron orbits at a fixed emission energy, which is referred to as the fold caustic in classical motion. The quantum manifestations of these singularities display a series of intermittent divergences in electronic flux distributions. We introduce semiclassical uniform approximation to repair the electron wavefunctions locally in a mixed phase space and obtain reasonable results. The approximation provides a better treatment of the problem.  相似文献   

3.
For general quantum systems the semiclassical behaviour of eigenfunctions in relation to the ergodic properties of the underlying classical system is quite difficult to understand. The Wignerfunctions of eigenstates converge weakly to invariant measures of the classical system, the so-called quantum limits, and one would like to understand which invariant measures can occur that way, thereby classifying the semiclassical behaviour of eigenfunctions. We introduce a class of maps on the torus for whose quantisations we can understand the set of quantum limits in great detail. In particular we can construct examples of ergodic maps which have singular ergodic measures as quantum limits, and examples of non-ergodic maps where arbitrary convex combinations of absolutely continuous ergodic measures can occur as quantum limits. The maps we quantise are obtained by cutting and stacking.  相似文献   

4.
While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge to multi-dimensional quantization rules. The extension is illustrated in the example of Bogomolny's transfer operator method applied in two quantum wells bounded by step potentials of different heights. This generalized semiclassical method accurately determines the energy spectrum of the systems, which indicates the substantial role of the proposed phase correction. Theoretically, the result can be extended to other semiclassical methods, such as Gutzwiller trace formula, dynamical zeta functions, and semielassical Landauer Buttiker formula. In practice, this recipe enhances the applicability of semiclassical methods to multi-dimensional quantum systems bounded by general soft potentials.  相似文献   

5.
To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT) within existing technology, this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2~n)), which could realize large-scale QFT using an arbitrary-scale quantum register. By developing a feasible method to realize the control quantum gate Rk, we experimentally realize the 2-bit semiclassical QFT over Z_(2~3) on IBM's quantum cloud computer, which shows the feasibility of the method. Then, we compare the actual performance of 2-bit semiclassical QFT with standard QFT in the experiments.The squared statistical overlap experimental data shows that the fidelity of 2-bit semiclassical QFT is higher than that of standard QFT, which is mainly due to fewer two-qubit gates in the semiclassical QFT. Furthermore, based on the proposed method, N = 15 is successfully factorized by implementing Shor's algorithm.  相似文献   

6.
It has been recently found that the equations of motion of several semiclassical systems must take into account terms arising from Berry phases contributions. Those terms are responsible for the spin Hall effect in semiconductor as well as the Magnus effect of light propagating in inhomogeneous media. Intensive ongoing research on this subject seems to indicate that a broad class of quantum systems may be affected by Berry phase terms. It is therefore important to find a general procedure allowing for the determination of semiclassical Hamiltonian with Berry Phase corrections. This article presents a general diagonalization method at order ħ for a large class of quantum Hamiltonians directly inducing Berry phase corrections. As a consequence, Berry phase terms on both coordinates and momentum operators naturally arise during the diagonalization procedure. This leads to new equations of motion for a wide class of semiclassical system. As physical applications we consider here a Dirac particle in an electromagnetic or static gravitational field, and the propagation of a Bloch electrons in an external electromagnetic field.  相似文献   

7.
8.
Using quantum maps, we study the accuracy of semiclassical trace formulas. The role of chaos in improving the semiclassical accuracy in some systems is demonstrated quantitatively. However, our study of the standard map cautions that this may not be most general. While studying a sawtooth map we demonstrate the rather remarkable fact that at the level of the time one trace even in the presence of fixed points on singularities the trace formula may be exact, and in any case has no logarithmic divergences observed for the quantum bakers map. As a byproduct we introduce fantastic periodic curves akin to curlicues.  相似文献   

9.
10.
We propose a conjugate application of the Bargmann representation of quantum mechanics. Applying the Maslov method to the semiclassical connection formula between the two representations, we derive a uniform semiclassical approximation for the coherent-state propagator which is finite at phase space caustics.  相似文献   

11.
徐峰  郑雨军 《物理学报》2013,62(21):213401-213401
量子相空间理论已用来研究物理学、化学等有关问题, 并为人们研究经典物理和量子物理的对应关系提供了一种有力工具. 在量子相空间中, 基于Wigner表象下的量子刘维尔方程, 建立分子纠缠轨线力学. 与经典分子力学方法不同, 分子纠缠轨线力学中的轨线不再是独立的, 而是“纠缠”在一起的, 这正是体系量子效应的体现. 这种半经典 的理论方法能给出体系的量子效应及具有启示意义的物理图像. 分子纠缠轨线力学被用来研究量子隧穿效应、分子光解反应动力学、自关联函数等. 本文综述了分子纠缠轨线力学最近的发展. 关键词: 纠缠轨线 量子相空间 半经典理论  相似文献   

12.
We discuss a phase space representation of quantum dynamics of systems with many degrees of freedom. This representation is based on a perturbative expansion in quantum fluctuations around one of the classical limits. We explicitly analyze expansions around three such limits: (i) corpuscular or Newtonian limit in the coordinate-momentum representation, (ii) wave or Gross-Pitaevskii limit for interacting bosons in the coherent state representation, and (iii) Bloch limit for the spin systems. We discuss both the semiclassical (truncated Wigner) approximation and further quantum corrections appearing in the form of either stochastic quantum jumps along the classical trajectories or the nonlinear response to such jumps. We also discuss how quantum jumps naturally emerge in the analysis of non-equal time correlation functions. This representation of quantum dynamics is closely related to the phase space methods based on the Wigner-Weyl quantization and to the Keldysh technique. We show how such concepts as the Wigner function, Weyl symbol, Moyal product, Bopp operators, and others automatically emerge from the Feynmann's path integral representation of the evolution in the Heisenberg representation. We illustrate the applicability of this expansion with various examples mostly in the context of cold atom systems including sine-Gordon model, one- and two-dimensional Bose-Hubbard model, Dicke model and others.  相似文献   

13.
In this work,we theoretically study hard-core bosons on a two-dimensional square optical superlattice at T = 0.First of all,we present the mean field phase diagram of this model in terms of the chemical potential μ and the alternating potential strength △.Besides a superfluid(SF) phase at △ = 0 and a charge density wave(CDW)phase in the large △ at half filling,we demonstrate that a supersolid(SS) phase emerges in the moderate △.Then,we focus on the μ = 0,e.g.,half filling case,using large-S semi-classical spin-wave approximation to study the SS to CDW quantum phase transition.In particular,we calculate the ground-state energy and the superfluid density at the level of1/S correction.We then compare the spin-wave results with the large scale quantum Monte Carlo(QMC) simulations using the cluster stochastic series expansion(CSSE) algorithm,and find that while the spin wave method is intuitive with clear physical pictures,the quantum critical point is quite different from that of numerical results which is believed to be accurate.We suggest that as simple as it is,this model still exhibits strong quantum fluctuations near the quantum critical point beyond the power of semiclassical spin-wave approach.  相似文献   

14.
The ground state spin-wave excitations and thermodynamic properties of two types of ferrimagnetic chains are investigated: the alternating spin-1/2 spin-5/2 chain and a similar chain with a spin-1/2 pendant attached to the spin-5/2 site. Results for magnetic susceptibility, magnetization and specific heat are obtained through the finite-temperature Lanczos method with the aim of describing the available experimental data, as well as comparison with theoretical results from the semiclassical approximation and the low-temperature susceptibility expansion derived from Takahashi's modified spin-wave theory. In particular, we study in detail the temperature versus magnetic field phase diagram of the spin-1/2 spin-5/2 chain, in which several low-temperature quantum phases are identified: the Luttinger liquid phase, the ferrimagnetic plateau and the fully polarized phase, and the respective quantum critical points and crossover lines.  相似文献   

15.
By applying the path integral method to two interacting systems, we derive a novel form of the semiclassical quantization rule including the topological phase which was recently found in certain quantum adiabatic processes.  相似文献   

16.
Certain broad low-energy peaks caused by a single partial wave in total cross sections are explained in terms of phase shifts. Such peaks have been associated with the real part of a Regge pole trajectory, having a maximum near an integer value of the angular momentum quantum number. At the peak energies, the pertinent partial-wave phase shift was shown to have a local maximum near a value π/2 modulo π. This implies no time delay in the semiclassical context. The phenomenon is a quantum effect, lacking a semiclassical interpretation.  相似文献   

17.
The effect of quantum fluctuations on solitons in the easy-plane ferromagnetic chain is considered within the semiclassical approximation. In accordance with the low temperature ideal gas picture we treat the solitons as a Boltzmann gas and impose quantisation on the spin wave spectrum. We present a method which allows to calculate quantum corrections in a systematic perturbation expansion in 1/S, whereS is the spin length. We use this method to obtain the soliton energy to second order at zero temperature. Our results indicate that the semiclassical approach reasonably describes quantum effects on soliton properties.  相似文献   

18.
Unifying general relativity and quantum mechanics is a great challenge left to us by Einstein. To face this challenge, considerable progress has been made in non-perturbative canonical (loop) quantum gravity during the past 20 years. The kinematical Hilbert space of the quantum theory is constructed rigorously. However, the semiclassical analysis of the theory is still a crucial and open issue. In this review, we first introduce our work on constructing a semiclassical weave state, using the [ω] operator on the kinematical Hilbert space of loop quantum gravity. Then we give an introduction to the two different approaches currently investigated for constructing coherent states in the kinematical Hilbert space. The current status of semiclassical analysis in loop quantum gravity is then summarized.  相似文献   

19.
We introduce quantum maps with particle-hole conversion (Andreev reflection) and particle-hole symmetry, which exhibit the same excitation gap as quantum dots in the proximity to a superconductor. Computationally, the Andreev maps are much more efficient than billiard models of quantum dots. This makes it possible to test analytical predictions of random-matrix theory and semiclassical chaos that were previously out of reach of computer simulations. We have observed the universal distribution of the excitation gap for a large Lyapunov exponent and the logarithmic reduction of the gap when the Ehrenfest time becomes comparable to the quasiparticle dwell time.  相似文献   

20.
A great effort has been devoted to formulating a classical relativistic theory of spin compatible with quantum relativistic wave equations. The main difficulty in connecting classical and quantum theories rests in finding a parameter that plays the role of proper time at a purely quantum level. We present a partial review of several proposals of classical and quantum spin theories from the pioneering works of Thomas and Frenkel, revisited in the classical BMT work, to the semiclassical model of Barut and Zanghi. We show that the last model can be obtained from a semiclassical limit of the Feynman proper time parametrization of the Dirac equation. At the quantum level, we derive spin precession equations in the Heisenberg picture. Analogies and differences with respect to classical theories are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号