首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Benquan Lu 《中国物理 B》2023,32(1):13101-013101
The study of magnetic field effects on the clock transition of Mg and Cd optical lattice clocks is scarce. In this work, the hyperfine-induced Landé $g$-factors and quadratic Zeeman shift coefficients of the ${n{\rm s}n{\rm p}}$ $^3P^{\rm o}_0$ clock states for $^{111,113}$Cd and $^{25}$Mg were calculated by using the multi-configuration Dirac-Hartree-Fock theory. To obtain accurate values of these parameters, the impact of electron correlations and furthermore the Breit interaction and quantum electrodynamical effects on the Zeeman and hyperfine interaction matrix elements, and energy separations were investigated in detail. We also estimated the contributions from perturbing states to the Landé $g$-factors and quadratic Zeeman shift coefficients concerned so as to truncate the summation over the perturbing states without loss of accuracy. Our calculations provide important data for estimating the first- and second-order Zeeman shifts of the clock transition for the Cd and Mg optical lattice clocks.  相似文献   

2.
The splitting of potential energy curves for the states $X^{2}\Pi _{3/2}$, $^{2}\Pi _{1/2}$ and $A^{2}\Sigma ^{ +}$ of hydroxyl OH under spin--orbit coupling (SOC) has been calculated by using the SO multi-configuration quasi-degenerate perturbation theory (SO-MCQDPT). Their Murrell--Sorbie (M--S) potential functions have been derived, then, the spectroscopic constants for $X^{2}\Pi _{3/2}$,$^{ 2}\Pi _{1/2}$ and $A^{2}\Sigma ^{ + }$ have been derived from the M--S function. The calculated dissociation energies for the three states are $D_{0}$[OH($X^{2}\Pi _{3/2})$]=34966.632cm$^{-1}$, $D_{0}$[OH($^{2}\Pi _{1/2})$]=34922.802cm$^{-1}$, and $D_{0}$[OH($A^{2}\Sigma ^{ + })$]=17469.794cm$^{-1}$, respectively. The vertical excitation energy $\nu [ {{ }^2\Pi _{1/2} ( {\nu = 0} ) \to {X}{ }^2\Pi _{3/2} ( {\nu = 0} )} ] = 139.6{\rm cm}^{-{\rm 1}}$. All the spectroscopic data for the $X^{2}\Pi _{3/2}$ and $^{2}\Pi _{1/2 }$ are given for the first time except the dissociation energy of $X^{2}\Pi _{3/2}$.  相似文献   

3.
Yuan-Fei Wei 《中国物理 B》2022,31(8):83102-083102
The dynamic polarizabilities of ${\rm 3s}^2\,^1{\rm S}_0$ and ${\rm 3s}{\rm 3p}\,^3{\rm P}_0^{\rm o}$ states of Al$^+$ are calculated using the hybrid configuration interaction and many-body perturbation theory method, and multiconfiguration Dirac-Hartree-Fock method in this work. Five ultraviolet magic wavelengths for the Al$^+$ clock transition ${\rm 3s}^2\,^1{\rm S}_0$-${\rm 3s3p}\,^3{\rm P}_0^{\rm o}$ are predicted. Although the suitable lasers are not available presently, the potential precision measurement on these magic wavelengths for the Al$^+$ clock transition would be used to extract the ratios of several certain transition matrix elements with high accuracy, and then help to improve the precision and reliability of the estimate of the BBR shift of the Al$^+$ clock transition. The differential dynamic polarizabilities at certain wavelengths are evaluated, which are useful to assess the ac Stark shift of the Al$^+$ clock transition frequency and helpful in the clock experiments to suppress the ac Stark shift of the clock transition as possible as it can.  相似文献   

4.
张晓燕  杨传路  高峰  任廷琦 《中国物理》2006,15(9):1981-1986
The multi-reference configuration interaction method and aug-cc-pvqz (AVQZ) have been used to calculate potential energy curves (PECs) of the singlet and triplet states of the riu and rig symmetry of B2++. All of the four states (^l∏u, ^1∏g, ^3∏u and ^3∏g) are found to be metastable states, though the potential well of ^3∏u symmetry is very shallow. Based on the PECs, the analytical potential energy functions (APEFs) of these states have been fitted using the least square fitting method and two models of function. The spectroscopic parameters of each state are also calculated, and are compared with other investigations in the literature. The credibility and veracity of the two functions are evaluated. Some ideas to improve the fitting accuracy are presented. Also the vibrational levels for each state are predicted by solving the SchrSdinger equation of nuclear motion.  相似文献   

5.
The tau lepton lifetime has been measured with the events collected by the DELPHI detector at LEP in the years 1991-1995. Three different methods have been exploited, using both one-prong and three-prong decay channels. Two measurements have been made using events in which both taus decay to a single charged particle. Combining these measurements gave . A third measurement using taus which decayed to three charged particles yielded These were combined with previous DELPHI results to measure the tau lifetime, using the full LEP1 data sample, to be .Received: 12 November 2003, Revised: 1 June 2004, Published online: 20 July 2004  相似文献   

6.
吴玲  杨晓华  陈扬骎 《中国物理 B》2009,18(7):2724-2728
This paper studies the isotopic effect of Cl2+ rovibronic spectra in the A2Πu(Ω=1/2) X 2Πg(Ω= 1/2) system.Based on the experimental results of the molecular constants of 35 Cl2+,it calculates the vibrational isotope shifts of the(2,7) and(3,7) band between the isotopic species 35 Cl+2,35 Cl 37 Cl+and 37 Cl2+,and estimates the rotational constants of both A 2 Π u and X 2 Π g states for the minor isotopic species 35 Cl 37 Cl+and 37 Cl2+.The experimental results of the spectrum of 35 Cl 37 Cl+(3,7) band proves the above mentioned theoretical calculation.The molecular constants and thus resultant rovibronic spectrum for 37 Cl2+ were predicted,which will be helpful for further experimental investigation.  相似文献   

7.
We report the constraints of $H_0$ obtained from Wilkinson Microwave Anisotropy Probe (WMAP) 9-year data combined with the latest baryonic acoustic oscillations (BAO) measurements. We use the BAO measurements from 6dF Galaxy Survey (6dFGS), the SDSS DR7 main galaxies sample (MGS), the BOSS DR12 galaxies, and the eBOSS DR14 quasars. Adding the recent BAO measurements to the cosmic microwave background (CMB) data from WMAP, we constrain cosmological parameters $\Omega_m=0.298\pm0.005$, $H_0=68.36^{+0.53}_{-0.52} {\rm km}\cdot {\rm s}^{-1}\cdot {\rm Mpc}^{-1}$, $\sigma_8=0.8170^{+0.0159}_{-0.0175}$ in a spatially flat $\Lambda$ cold dark matter ($\Lambda$CDM) model, and $\Omega_m=0.302\pm0.008$, $H_0=67.63\pm1.30 {\rm km}\cdot{\rm s}^{-1}\cdot {\rm Mpc}^{-1}$, $\sigma_8=0.7988^{+0.0345}_{-0.0338}$ in a spatially flat $w$CDM model, respectively. Our measured $H_0$ results prefer a value lower than 70 ${\rm km}\cdot {\rm s}^{-1}\cdot{\rm Mpc}^{-1}$, consistent with the recent data on CMB constraints from Planck (2018), but in $3.1$ and $3.5\sigma$ tension with local measurements of SH0ES (2018) in $\Lambda$CDM and $w$CDM framework, respectively. Our results indicate that there is a systematic tension on the Hubble constant between SH0ES and the combination of CMB and BAO datasets.  相似文献   

8.
Chengdong Zhou 《中国物理 B》2022,31(3):30301-030301
Expectation values of single electron and interelectronic geometric quantities such as $\langle r\rangle$, $\langle r_{12}\rangle$, $\langle r_<\rangle$, $\langle r_>\rangle$, $\langle \cos\theta_{12}\rangle$ and $\langle \theta_{12}\rangle$ are calculated for doubly excited $2{\rm p}n{\rm p}\,{}^1P^{\,\rm e}\,(3\leq n\leq5),\, 2{\rm p}n{\rm p}\,{}^3\!P^{\,\rm e}\,(2\leq n\leq5)$ and $2{\rm p}n{\rm d}\,{}^{1,3}D^{\,\rm o}\,(3\leq n\leq5)$ states of helium using Hylleraas-$B$-spline basis set. The energy levels converge to at least 10 significant digits in our calculations. The extrapolated values of geometric quantities except for $\langle \theta_{12}\rangle$ reach 10 significant digits as well; $\langle \theta_{12}\rangle$ reaches at least 7 significant digits using a multipole expansion approach. Our results provide a precise reference for future research.  相似文献   

9.
To determine nonspherical angular-momentum amplitudes in hadrons at long ranges (low Q2), data were taken for the pe, e'p0 reaction in the Δ region at Q 2 = 0.060 (GeV/c)2 utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios at W = 1232 MeV are , Re( )%, and Re( )%. These disagree with predictions of constituent quark models but are in reasonable agreement with lattice calculations with nonlinear (chiral) pion mass extrapolations, with chiral effective field theory, and with dynamical models with pion cloud effects. These results confirm the dominance, and general Q2 variation, of the pionic contribution at large distances.  相似文献   

10.
Rong Zhang 《中国物理 B》2022,31(6):63402-063402
The effect of collision energy on the magnetically tuned $^{6}$Li-$^{6}$Li Feshbach resonance (FR) is investigated theoretically by using the coupled-channel (CC) method for the collision energy ranging from 1 μ$ {\rm K} \cdot {k}_{\rm B}$ to 100 μ$ {\rm K} \cdot {k}_{\rm B}$. At the collision energy of 1 μ$ {\rm K} \cdot {k}_{\rm B}$, the resonance positions calculated are 543.152 Gs (s wave, the unit $1 {\rm Gs}=10^{-4} {\rm T}$), 185.109 Gs (p wave $|m_{l}| = 0$), and 185.113 Gs (p wave $|m_{l}| = 1$), respectively. The p-wave FR near 185 Gs exibits a doublet structure of 4 mGs, associated with dipole-dipole interaction. With the increase of the collision energy, it is found that the splitting width remains the same (4 mGs), and that the resonance positions of s and p waves are shifted to higher magnetic fields with the increase of collision energy. The variations of the other quantities including the resonance width and the amplitude of the total scattering section are also discussed in detail. The thermally averaged elastic rate coefficients at $T=10$, 15, 20, 25 K are calculated and compared.  相似文献   

11.
A new evaluation of the hadronic vacuum polarization contribution to the muon magnetic moment is presented. We take into account the reanalysis of the low-energy e + e -annihilation cross section into hadrons by the CMD-2 Collaboration. The agreement between e + e -and spectral functions in the channel is found to be much improved. Nevertheless, significant discrepancies remain in the center-of-mass energy range between 0.85 and , so that we refrain from averaging the two data sets. The values found for the lowest-order hadronic vacuum polarization contributions are where the errors have been separated according to their sources: experimental, missing radiative corrections in e + e -data, and isospin breaking. The corresponding Standard Model predictions for the muon magnetic anomaly read where the errors account for the hadronic, light-by-light (LBL) scattering and electroweak contributions. The deviations from the measurement at BNL are found to be (1.9 ) and (0.7 ) for the e + e -- and -based estimates, respectively, where the second error is from the LBL contribution and the third one from the BNL measurement.Received: 7 September 2003, Published online: 30 October 2003  相似文献   

12.
白尔隽  舒启清 《中国物理》2005,14(1):208-211
The electron tunnelling phase time τP and dwell time τD through an associated delta potential barrier U(x) = ξδ(x) are calculated and both are in the order of 10^-17~10^-16s. The results show that the dependence of the phase time on the delta barrier parameter ξ can be described by the characteristic length lc = h^2/meξ and the characteristic energy Ec=meξ^2/h^2 of the delta barrier, where me is the electron mass, lc and Ec are assumed to be the effective width and height of the delta barrier with lcEc=ξ, respectively. It is found that TD reaches its maximum and τD = τp as the energy of the tunnelling electron is equal to Ec/2, i.e. as lc =λDB, λDB is de Broglie wave length of the electron.  相似文献   

13.
Interaction potential of the SiD(X2Π) radical is constructed by using the CCSD(T) theory in combination with the largest correlation-consistent quintuple basis set augmented with the diffuse functions in the valence range. Using the interaction potential, the spectroscopic parameters are accurately determined. The present D0, De, Re, ωe, αe and Be values are of 3.0956 eV, 3.1863 eV, 0.15223 nm, 1472.894 cm-1, 0.07799 cm-1 and 3.8717 cm-1, respectively, which are in excellent agreement with the measurements. A total of 26 vibrational states is predicted when J=0 by solving the radial Schro¨dinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J=0 are reported for the first time, which are in good accord with the available experiments. The total and various partial-wave cross sections are calculated for the elastic collisions between Si and D atoms in their ground states at 1.0×10-11–1.0×10-3 a.u. when the two atoms approach each other along the SiD(X2Π) potential energy curve. Four shape resonances are found in the total elastic cross sections, and their resonant energies are of 1.73×10-5, 4.0×10-5, 6.45×10-5 and 5.5×10-4 a.u., respectively. Each shape resonance in the total elastic cross sections is carefully investigated. The results show that the shape of the total elastic cross sections is mainly dominated by the s partial wave at very low temperatures. Because of the weakness of the shape resonances coming from the higher partial waves, most of them are passed into oblivion by the strong s partial-wave elastic cross sections.  相似文献   

14.
Density functional Theory (DFT) (B3p86) of Gaussian03 has been used to optimize the structure of Os2 molecule. The result shows that the ground state for Os2 molecule is 9-multiple state and its electronic configuration is ^9∑^+g, which shows spin polarization effect of Os2 molecule of transition metal elements for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions with higher energy states. So, the fact that the ground state for Os2 molecule is a 9-multiple state is indicative of spin polarization effect of Os2 molecule of transition metal elements. That is, there exist 8 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of Os2 molecule is minimized. It can be concluded that the effect of parallel spin of Os2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state ^9∑^+g and other states of Os2 molecule are derived. Dissociation energy De for the ground state of Os2 molecule is 3.3971eV, equilibrium bond length Re is 0.2403nm, vibration frequency ωe is 235.32cm^-1. Its force constants f2, f3, and f4 are 3.1032×10^2aJ·nm^-2, -14.3425×10^3aJ·nm^-3 and 50.5792×10^4aJ·nm^-4 respectively. The other spectroscopic data for the ground state of Os2 molecule ωexe, Be and ae are 0.4277cm^- 1, 0.0307cm^- 1 and 0.6491 × 10^-4cm^-1 respectively.  相似文献   

15.
We calculate the (parity-violating) spin-rotation angle of a polarized neutron beam through hydrogen and deuterium targets, using pionless effective field theory up to next-to-leading order. Our result is part of a program to obtain the five leading independent low-energy parameters that characterize hadronic parity violation from few-body observables in one systematic and consistent framework. The two spin-rotation angles provide independent constraints on these parameters. Our result for np spin rotation is $\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right), while for nd spin rotation we obtain $\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right), where the g (X-Y), in units of $MeV^{ - \frac{3} {2}}$MeV^{ - \frac{3} {2}}, are the presently unknown parameters in the leading-order parity-violating Lagrangian. Using naıve dimensional analysis to estimate the typical size of the couplings, we expect the signal for standard target densities to be $\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m}$\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m} for both hydrogen and deuterium targets. We find no indication that the nd observable is enhanced compared to the np one. All results are properly renormalized. An estimate of the numerical and systematic uncertainties of our calculations indicates excellent convergence. An appendix contains the relevant partial-wave projectors of the three-nucleon system.  相似文献   

16.
Highly conductive boron-doped hydrogenated microcrystalline silicon (\mu c-Si:H) films are prepared by very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at the substrate temperatures $T_{\rm S})$ ranging from 90$^\circ$C to 270$^\circ$C. The effects of $T_{\rm S}$ on the growth and properties of the films are investigated. Results indicate that the growth rate, the electrical (dark conductivity, carrier concentration and Hall mobility) and structural (crystallinity and grain size) properties are all strongly dependent on $T_{\rm S}$. As $T_{\rm S}$ increases, it is observed that 1) the growth rate initially increases and then arrives at a maximum value of 13.3 nm/min at $T_{\rm S}$=210$^\circ$C, 2) the crystalline volume fraction ($X_{\rm c})$ and the grain size increase initially, then reach their maximum values at $T_{\rm S}$=140$^\circ$C, and finally decrease, 3) the dark conductivity ($\sigma _{\rm d})$, carrier concentration and Hall mobility have a similar dependence on $T_{\rm S}$ and arrive at their maximum values at $T_{\rm S}$=190$^\circ$C. In addition, it is also observed that at a lower substrate temperature $T_{\rm S}$, a higher dopant concentration is required in order to obtain a maximum $\sigma _{\rm d}$.  相似文献   

17.
余本海  戴启润  施德恒  刘玉芳 《中国物理》2007,16(10):2962-2967
The density functional theory (B3LYP, B3P86) and the quadratic configuration-interaction method including single and double substitutions (QCISD(T), QCISD) presented in Gaussian03 program package are employed to calculate the equilibrium internuclear distance $R_{\rm e}$, the dissociation energy $D_{\rm e }$ and the harmonic frequency $\omega _{\rm e}$ for the $X{}^{1}\Sigma^{ + }_{\rm g}$ state of sodium dimer in a number of basis sets. The conclusion is gained that the best $R_{\rm e}$, $D_{\rm e}$ and $\omega _{\rm e}$ results can be attained at the QCISD/6-311G(3df,3pd) level of theory. The potential energy curve at this level of theory for this state is obtained over a wide internuclear separation range from 0.16 to 2.0~nm and is fitted to the analytic Murrell--Sorbie function. The spectroscopic parameters $D_{\rm e}$, $D_{0}$, $R_{\rm e}$, $\omega _{\rm e}$, $\omega _{\rm e}\chi _{\rm e}$, $\alpha _{\rm e}$ and $B_{\rm e}$ are calculated to be 0.7219~eV, 0.7135~eV, 0.31813~nm, 151.63~cm$^{ - 1}$, 0.7288~cm$^{ - 1}$, 0.000729~cm$^{ - 1}$ and 0.1449~cm$^{ - 1}$, respectively, which are in good agreement with the measurements. With the potential obtained at the QCISD/6-311G(3df,3pd) level of theory, a total of 63 vibrational states is found when $J=0$ by solving the radial Schr\"{o}dinger equation of nuclear motion. The vibrational level, corresponding classical turning point and inertial rotation constant are computed for each vibrational state. The centrifugal distortion constants ($D_{\upsilon }\, H_{\upsilon }$, $L_{\upsilon }$, $M_{\upsilon }$, $N_{\upsilon }$ and $O_{\upsilon })$ are reported for the first time for the first 31 vibrational states when $J=0$.  相似文献   

18.
刘莉  苏雄睿 《中国物理 B》2008,17(6):2170-2174
This paper reports that single-layer and graded Au-TiO2 granular composite films with Au atom content 15%- 66% were prepared by using reactive co-sputtering technique. The third-order optical nonlinearity of single-layer and graded composite films was investigated by using s- and p-polarized Z-scans in femtosecond time scale. The nonlinear absorption coefficient βeff of single-layer Au-TiO2 films is measured to be -2.3×10^3-0.76×10^3 cm/GW with Au atom content 15%-66%. The βeff value of the 10-layer Au-TiO2 graded film is enhanced to be -2.1×10^4cm/GW calculated from p-polarized Z-scans, which is about ten times the maximum βeff of single-layer films. Broadened response in the wavelength region 730-860 nm of the enhanced optical nonlinearity of graded Au-TiO2 composite films was also investigated.  相似文献   

19.
《中国物理 B》2021,30(7):70601-070601
Caesium atomic fountain clock is a primary frequency standard, which realizes the duration of second. Its performance is mostly dominated by the frequency accuracy, and the C-field induced second-order Zeeman frequency shift is the major effect, which limits the accuracy improvement. By applying a high-precision current supply and high-performance magnetic shieldings, the C-field stability has been improved significantly. In order to achieve a uniform C-field, this paper proposes a doubly wound C-field solenoid, which compensates the radial magnetic field along the atomic flight region generated by the lead-out single wire and improves the accuracy evaluation of second-order Zeeman frequency shift. Based on the stable and uniform C-field, we launch the selected atoms to different heights and record the magnetically sensitive Ramsey transition|F = 3, mF=-1 → |F = 4, mF=-1 central frequency, obtaining this frequency shift as 131.03×10~(-15) and constructing the C-field profile(σ = 0.15 n T). Meanwhile, during normal operation, we lock NTSC-F2 to the central frequency of the magnetically sensitive Ramsey transition |F = 3, mF=-1 → |F = 4, mF=-1 fringe for ten consecutive days and record this frequency fluctuation in time domain. The first evaluation of second-order Zeeman frequency shift uncertainty is 0.10×10~(-15). The total deviation of the frequency fluctuation on the clock transition induced by the C-field instability is less than 2.6×10~(-17). Compared with NTSC-F1, NTSC-F2, there appears a significant improvement.  相似文献   

20.
方明卫  何建超  胡战超  包芸 《中国物理 B》2022,31(1):14701-014701
We study the characteristics of temperature fluctuation in two-dimensional turbulent Rayleigh–Benard convection in′a square cavity by direct numerical simulations.The Rayleigh number range is 1×108≤Ra≤1×1013,and the Prandtl number is selected as Pr=0.7 and Pr=4.3.It is found that the temperature fluctuation profiles with respect to Ra exhibit two different distribution patterns.In the thermal boundary layer,the normalized fluctuationθrms/θrms,max is independent of Ra and a power law relation is identified,i.e.,θrms/θrms,max~(z/δ)0.99±0.01,where z/δis a dimensionless distance to the boundary(δis the thickness of thermal boundary layer).Out of the boundary layer,when Ra≤5×109,the profiles ofθrms/θrms,max descend,then ascend,and finally drop dramatically as z/δincreases.While for Ra≥1×1010,the profiles continuously decrease and finally overlap with each other.The two different characteristics of temperature fluctuations are closely related to the formation of stable large-scale circulations and corner rolls.Besides,there is a critical value of Ra indicating the transition,beyond which the fluctuation hθrmsiV has a power law dependence on Ra,given by hθrmsiV~Ra?0.14±0.01.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号