首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The toric Hilbert scheme is a parameter space for all ideals with the same multigraded Hilbert function as a given toric ideal. Unlike the classical Hilbert scheme, it is unknown whether toric Hilbert schemes are connected. We construct a graph on all the monomial ideals on the scheme, called the flip graph, and prove that the toric Hilbert scheme is connected if and only if the flip graph is connected. These graphs are used to exhibit curves in P 4 whose associated toric Hilbert schemes have arbitrary dimension. We show that the flip graph maps into the Baues graph of all triangulations of the point configuration defining the toric ideal. Inspired by the recent discovery of a disconnected Baues graph, we close with results that suggest the existence of a disconnected flip graph and hence a disconnected toric Hilbert scheme. Received May 15, 2000, and in revised form March 8, 2001. Online publication January 7, 2002.  相似文献   

2.
We study properties of the sets of minimal forbidden minors for the families of graphs having a vertex cover of size at most k. We denote this set by O(k-VERTEX COVER) and call it the set of obstructions. Our main result is to give a tight vertex bound of O(k-VERTEX COVER), and then confirm a conjecture made by Liu Xiong that there is a unique connected obstruction with maximum number of vertices for k-VERTEX COVER and this graph is C2k+1. We also find two iterative methods to generate graphs in O((k+1)-VERTEX COVER) from any graph in O(k-VERTEX COVER).  相似文献   

3.
The Merrifield-Simmons index of a graph is defined as the total number of its independent sets, including the empty set. Denote by G(n,k) the set of connected graphs with n vertices and k cut vertices. In this paper, we characterize the graphs with the maximum and minimum Merrifield-Simmons index, respectively, among all graphs in G(n,k) for all possible k values.  相似文献   

4.
5.
Rainbow Connection Number and Radius   总被引:1,自引:0,他引:1  
The rainbow connection number, rc(G), of a connected graph G is the minimum number of colours needed to colour its edges, so that every pair of its vertices is connected by at least one path in which no two edges are coloured the same. In this note we show that for every bridgeless graph G with radius r, rc(G) ≤  r(r + 2). We demonstrate that this bound is the best possible for rc(G) as a function of r, not just for bridgeless graphs, but also for graphs of any stronger connectivity. It may be noted that for a general 1-connected graph G, rc(G) can be arbitrarily larger than its radius (K 1,n for instance). We further show that for every bridgeless graph G with radius r and chordality (size of a largest induced cycle) k, rc(G) ≤  rk. Hitherto, the only reported upper bound on the rainbow connection number of bridgeless graphs is 4n/5 ? 1, where n is order of the graph (Caro et al. in Electron J Comb 15(1):Research paper 57, 13, 2008). It is known that computing rc(G) is NP-Hard (Chakraborty and fischer in J Comb Optim 1–18, 2009). Here, we present a (r + 3)-factor approximation algorithm which runs in O(nm) time and a (d + 3)-factor approximation algorithm which runs in O(dm) time to rainbow colour any connected graph G on n vertices, with m edges, diameter d and radius r.  相似文献   

6.
《Discrete Applied Mathematics》2002,116(1-2):115-126
For vertices u and v in an oriented graph D, the closed interval I[u,v] consists of u and v together with all vertices lying in a uv geodesic or vu geodesic in D. For SV(D), I[S] is the union of all closed intervals I[u,v] with u,vS. A set S is convex if I[S]=S. The convexity number con(D) is the maximum cardinality of a proper convex set of V(D). The nontrivial connected oriented graphs of order n with convexity number n−1 are characterized. It is shown that there is no connected oriented graph of order at least 4 with convexity number 2 and that every pair k, n of integers with 1⩽kn−1 and k≠2 is realizable as the convexity number and order, respectively, of some connected oriented graph. For a nontrivial connected graph G, the lower orientable convexity number con(G) is the minimum convexity number among all orientations of G and the upper orientable convexity number con+(G) is the maximum such convexity number. It is shown that con+(G)=n−1 for every graph G of order n⩾2. The lower orientable convexity numbers of some well-known graphs are determined, with special attention given to outerplanar graphs.  相似文献   

7.
We consider proper edge colorings of a graph G using colors of the set {1, . . . , k}. Such a coloring is called neighbor sum distinguishing if for any pair of adjacent vertices x and y the sum of colors taken on the edges incident to x is different from the sum of colors taken on the edges incident to y. The smallest value of k in such a coloring of G is denoted by ndiΣ(G). In the paper we conjecture that for any connected graph G ≠ C 5 of order n ≥ 3 we have ndiΣ(G) ≤ Δ(G) + 2. We prove this conjecture for several classes of graphs. We also show that ndiΣ(G) ≤ 7Δ(G)/2 for any graph G with Δ(G) ≥ 2 and ndiΣ(G) ≤ 8 if G is cubic.  相似文献   

8.
The Turán number ex(n, G) is the maximum number of edges in any n-vertex graph that does not contain a subgraph isomorphic to G. We consider a very special case of the Simonovits’s theorem (Simonovits in: Theory of graphs, Academic Press, New York, 1968) which determine an asymptotic result for Turán numbers for graphs with some properties. In the paper we present a more precise result for even wheels. We provide the exact value for Turán number ex(n, W 2k ) for n ≥ 6k ? 10 and k ≥ 3. In addition, we show that ${ex(n,W_6)= \lfloor\frac{n^2}{3}\rfloor}$ for all n ≥ 6. These numbers can be useful to calculate some Ramsey numbers.  相似文献   

9.
An intersection graph of rectangles in the (x, y)-plane with sides parallel to the axes is obtained by representing each rectangle by a vertex and connecting two vertices by an edge if and only if the corresponding rectangles intersect. This paper describes algorithms for two problems on intersection graphs of rectangles in the plane. One is an O(n log n) algorithm for finding the connected components of an intersection graph of n rectangles. This algorithm is optimal to within a constant factor. The other is an O(n log n) algorithm for finding a maximum clique of such a graph. It seems interesting that the maximum clique problem is polynomially solvable, because other related problems, such as the maximum stable set problem and the minimum clique cover problem, are known to be NP-complete for intersection graphs of rectangles. Furthermore, we briefly show that the k-colorability problem on intersection graphs of rectangles is NP-complete.  相似文献   

10.
Let k be a non-negative integer. A branch vertex of a tree is a vertex of degree at least three. We show two sufficient conditions for a connected claw-free graph to have a spanning tree with a bounded number of branch vertices: (i) A connected claw-free graph has a spanning tree with at most k branch vertices if its independence number is at most 2k + 2. (ii) A connected claw-free graph of order n has a spanning tree with at most one branch vertex if the degree sum of any five independent vertices is at least n ? 2. These conditions are best possible. A related conjecture also is proposed.  相似文献   

11.
A set of vertices S of a graph G is convex if all vertices of every geodesic between two of its vertices are in S. We say that G is k-convex if V(G) can be partitioned into k convex sets. The convex partition number of G is the least k ⩾ 2 for which G is k-convex. In this paper we examine k-convexity of graphs. We show that it is NP-complete to decide if G is k-convex, for any fixed k ⩾ 2. We describe a characterization for k-convex cographs, leading to a polynomial time algorithm to recognize if a cograph is k-convex. Finally, we discuss k-convexity for disconnected graphs.  相似文献   

12.
We show that if a graph has maximum degree d and crossing number k, its rectilinear crossing number is at most O(dk2). Hence for graphs of bounded degree, the crossing number and the rectilinear crossing number are bounded as functions of one another. We also obtain a generalization of Tutte's theorem on convex embeddings of 3-connected plane graphs. © 1929 John Wiley & Sons, Inc.  相似文献   

13.
We analyze Markov chains for generating a random k‐coloring of a random graph Gn,d/n. When the average degree d is constant, a random graph has maximum degree Θ(log n/log log n), with high probability. We show that, with high probability, an efficient procedure can generate an almost uniformly random k‐coloring when k = Θ(log log n/log log log n), i.e., with many fewer colors than the maximum degree. Previous results hold for a more general class of graphs, but always require more colors than the maximum degree. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

14.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.  相似文献   

15.
In this paper,we consider the family of generalized Petersen graphs P(n,4).We prove that the metric dimension of P(n,4) is 3 when n ≡ 0(mod 4),and is 4 when n = 4k + 3(k is even).For n ≡ 1,2(mod 4) and n = 4k + 3(k is odd),we prove that the metric dimension of P(n,4) is bounded above by 4.This shows that each graph of the family of generalized Petersen graphs P(n,4)has constant metric dimension.  相似文献   

16.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. For every pair of positive integers n,k, it is proved that if 3?k?n-3, then Hn,k, the graph obtained from the star K1,n-1 by joining a vertex of degree 1 to k+1 other vertices of degree 1, is the unique connected graph that maximizes the largest signless Laplacian eigenvalue over all connected graphs with n vertices and n+k edges.  相似文献   

17.
We consider the game of Cops and Robbers played on finite and countably infinite connected graphs. The length of games is considered on cop-win graphs, leading to a new parameter, the capture time of a graph. While the capture time of a cop-win graph on n vertices is bounded above by n−3, half the number of vertices is sufficient for a large class of graphs including chordal graphs. Examples are given of cop-win graphs which have unique corners and have capture time within a small additive constant of the number of vertices. We consider the ratio of the capture time to the number of vertices, and extend this notion of capture time density to infinite graphs. For the infinite random graph, the capture time density can be any real number in [0,1]. We also consider the capture time when more than one cop is required to win. While the capture time can be calculated by a polynomial algorithm if the number k of cops is fixed, it is NP-complete to decide whether k cops can capture the robber in no more than t moves for every fixed t.  相似文献   

18.
Motivated by the gateway placement problem in wireless networks, we consider the geometric k-centre problem on unit disc graphs: given a set of points P in the plane, find a set F of k points in the plane that minimizes the maximum graph distance from any vertex in P to the nearest vertex in F in the unit disc graph induced by PF. We show that the vertex 1-centre provides a 7-approximation of the geometric 1-centre and that a vertex k-centre provides a 13-approximation of the geometric k-centre, resulting in an O(kn)-time 26-approximation algorithm. We describe O(n2m)-time and O(n3)-time algorithms, respectively, for finding exact and approximate geometric 1-centres, and an O(mn2k)-time algorithm for finding a geometric k-centre for any fixed k. We show that the problem is NP-hard when k is an arbitrary input parameter. Finally, we describe an O(n)-time algorithm for finding a geometric k-centre in one dimension.  相似文献   

19.
We consider the existence of Hamiltonian cycles for the locally connected graphs with a bounded vertex degree. For a graph G, let Δ(G) and δ(G) denote the maximum and minimum vertex degrees, respectively. We explicitly describe all connected, locally connected graphs with Δ(G)?4. We show that every connected, locally connected graph with Δ(G)=5 and δ(G)?3 is fully cycle extendable which extends the results of Kikust [P.B. Kikust, The existence of the Hamiltonian circuit in a regular graph of degree 5, Latvian Math. Annual 16 (1975) 33-38] and Hendry [G.R.T. Hendry, A strengthening of Kikust’s theorem, J. Graph Theory 13 (1989) 257-260] on full cycle extendability of the connected, locally connected graphs with the maximum vertex degree bounded by 5. Furthermore, we prove that problem Hamilton Cycle for the locally connected graphs with Δ(G)?7 is NP-complete.  相似文献   

20.
We present an infinite set A of finite graphs such that for any graph G e A the order | V(k n (G))| of the n-th iterated clique graph k n (G) is a linear function of n. We also give examples of graphs G such that | V(k n(G))| is a polynomial of any given positive degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号