首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cisplatin (CP) has been widely used as an anticancer drug for more than 30 years despite severe side effects due to its low bioavailability and poor specificity. For this reason, it is paramount to study and design novel nanomaterials to be used as vectors capable to effectively deliver the drug to the biological target. The CP square‐planar geometry, together with its low water solubility, suggests that it could be possibly easily adsorbed on 2D graphene nanostructures through the interaction with the related highly conjugated π‐electron system. In this work, pyrene has been first selected as the minimum approximation to the graphene plane, which allows to properly study the noncovalent interactions determining the CP adsorption. In particular, electronic structure calculations at the MP2C and DFT‐SAPT levels of theory have allowed to obtain benchmark interaction energies for some limiting configurations of the CP–pyrene complex, as well as to assess the role of the different contributions to the total interaction: it has been found that the parallel configurations of the aggregate are mainly stabilized around the minimum region by dispersion, in a similar way as for complexes bonded through ππ interactions. Then, the benchmark interaction energies have been used to test corresponding estimations obtained within the less expensive DFT to validate an optimal exchange‐correlation functional which includes corrections to take properly into account for the dispersion contribution. Reliable DFT interaction energies have been therefore obtained for CP adsorbed on graphene prototypes of increasing size, ranging from coronene, ovalene, and up to C150H30. Finally, DFT geometry optimizations and frequency calculations have also allowed a reliable estimation of the adsorption enthalpy of CP on graphene, which is found particularly favorable (about −20 kcal/mol at 298 K and 1 bar) being twice that estimated for the corresponding benzene adsorption. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis techniques.The improved photocatalytic property of the ZnO/GO composite material,evaluated by the photocatalytic degradation of methyl orange(MO) under UV irradiation,is ascribed to the intimate contact between ZnO and GO,the enhanced adsorption of MO,the quick electron transfer from excited ZnO particles to GO sheets and the activation of MO molecules viaπ-πinteraction between MO and GO.  相似文献   

3.
Graphene oxide (GO) nanosheets dispersed in strong acidic t-butanol/water medium can be reduced and self-assembled into a self-standing graphene hydrogel under γ-ray radiation, providing a facile and economical preparation method for hydroxylalkylated graphene-based aerogel.  相似文献   

4.
Functionalized nanocomposites based on various type of graphene nanomaterials including graphene, graphene oxides (GOs), and doped graphene (oxides) are widely used as materials for various sensors that can display high sensitivity, selectivity and stability. This review with 347 references summarizes advances in the preparation and functionalization of graphene nanocomposites for the application of electrochemical sensors and biosensors. Following a general introduction into the field, the article is divided into subsections on (a) the synthesis and functionalization of nanocomposites (made from graphene, various kinds of GOs, heteroatom-doped GOs), (b) on methods for functionalization of composites (with other carbon nanomaterials, metal nanoparticles, metal oxide and metal sulfide nanoparticles), (c) on functionalization with inorganic materials including polyoxometalates, hexacyanoferrates, minerals), (d) on functionalization with organic materials such as amino acids, surfactants, organic dyes, ionic liquids, macrocycles (including cyclodextrins, crown ethers and calixarenes), and (e) on functionalization with organometallics and with various other organic compounds, (f) on functionalizations with polymers such as conventional polymers, polyelectrolytes, conducting polymers, molecularly imprinted polymers, (g) on functionalization with biomolecules including proteins and nucleic acids. Other subsections cover flexible graphene and GO based nanocomposites and 3D composites. Application of graphene and GO nanocomposites are then covered in a in large section that comprises electrochemical sensors and biosensors (based on voltammetry, amperometry, potentiometry, impedimetry, electrochemiluminescence, photoelectrochemistry, field effect transistors, electrochemical immunosensors) with specific subsections on gas sensors, enzymatic biosensors and gene sensors. A concluding section covers current challenges and perspectives of graphene and GO based (bio)sensing.
Graphical abstract Illustration of electroanalytical applications of graphene functionalized with various materials, including carbon nanotube (CNT), fullerene (C60), nanodiamond (ND), nanoparticle (NP), polyoxometalate (POM), metal hexacyanoferrate (MHCF), metalphthalocyanine (MPc), cyclodextrin (CD), poly(sodium 4-styrenesulfonate) (PSS), chitosan (CHIT), DNA and enzyme.
  相似文献   

5.
The graphene oxide (GO) is carbon based material that has high surface area, high adsorption ability, and is stable at high temperature. In this work, the GO phase was prepared and used for gas chromatographic separation. GO nanosheets were covalently bonded onto the inner surface of fused silica capillary column using 3-aminopropyldiethoxymethyl silane as cross-linking agent. The prepared GO nanosheets were characterized with TEM and the GO coating was characterized with SEM. As a high performance stationary phase, GO provides not only a high surface area to increase the phase ratio but also rich functional groups for the formation of hydrophobicity, hydrogen bonding, and π–π electrostatic stacking interactions with volatile aromatic or unsaturated organic compounds. Thus, mixtures of a wide range of organic compounds including alcohols and aromatic compounds were well separated and an efficiency of 1990 theoretical plates per meter for anisole was obtained on GO coated 1.0 m × 200 μm i.d. fused silica capillary column. The experimental results demonstrate that GO coated capillary columns are promising for gas chromatographic separation.  相似文献   

6.
A magnetic reduced graphene oxide composite (MRGO) was successfully prepared by a simple and green method. MRGO was then used as an adsorbent and found to exhibit enhanced removal efficiency for various chlorophenols (CPs) from water compared with its precursors, graphene oxide (GO) and reduced graphene oxide. The CPs were o-chlorophenol, p-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol. Among them, 2,4,6-trichlorophenol, which exhibited the lowest water solubility and highest molecular weight, most easily bound to MRGO. The preferential interactions between MRGO and CPs were hydrophobic interactions (π-π stacking and hydrophobic effect). This result was confirmed by the equilibrium adsorption behavior in which isotherms were all well described by Freudlich model, indicating heterogeneous and multilayer adsorption. Therefore, CP adsorption was more favored under neutral and acidic conditions, and the decreased removal efficiency of MRGO at higher pH levels was due to the improved hydrophilicity of CPs for deprotonation effect. Moreover, MRGO showed fast removal of each CP, achieving adsorption equilibrium within 10.0 min, presented efficient separation from water under an external magnetic field, and was easily regenerated using dilute NaOH aqueous solution after reaching saturated adsorption. Adsorption capacity of the regenerated MRGO had almost no loss until after five cycles. In summary, MRGO was an efficient adsorbent for the removal of various CPs and had considerable application potential in water treatment.  相似文献   

7.
Graphene nanosheets possess a range of extraordinary physical and electrical properties with enormous potential for applications in microelectronics, photonic devices, and nanocomposite materials. However, single graphene platelets tend to undergo agglomeration due to strong π–π and Van der Waals interactions, which significantly compromises the final material properties. One of the strategies to overcome this problem, and to increase graphene compatibility with a receiving polymer host matrix, is to modify graphene (or graphene oxide (GO)) with polymer brushes. The research to date can be grouped into approaches involving grafting‐from and grafting‐to techniques, and further into approaches relying on covalent or noncovalent attachment of polymer chains to the suitably modified graphene/GO. The present Highlight article describes research efforts to date in this area, focusing on the use of controlled/living radical polymerization techniques. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Graphene nanosheets offer intriguing electronic, thermal and mechanical properties and are expected to find a variety of applications in high‐performance nanocomposite materials. The great challenge of exfoliating and dispersing pristine graphite or graphene sheets in various solvents or matrices can be achieved by facilely and properly chemical functionalization of the carbon nanosheets. Here we reported an efficient way to functionalize graphene sheets with presynthesized polymer via a combination of atom transfer nitroxide radical coupling chemistry with the grafting‐onto strategy, which enable us to functionalize graphene sheets with well‐defined polymer synthesized via living radical polymerization. A radical scavenger species, 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO), was firstly anchored onto ? COOH groups on graphene oxide (GO) to afford TEMPO‐functionalized graphene sheets (GS‐TEMPO), meanwhile, the GO sheets were thermally reduced. Next, GS‐TEMPO reacted with Br‐terminated well‐defined poly(N‐isopropylacrylamide) (PNIPAM) homopolymer, which was presynthesized by SET‐LRP, in the presence of CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine to form PNIPAM‐graphene sheets (GS‐PNIPAM) nanocomposite in which the polymers were covalently linked onto the graphene via the alkoxyamine conjunction points. The PNIPAM‐modified graphene sheets are easily dispersible in organic solvents and water, and a temperature‐induced phase transition was founded in the water suspension of GS‐PNIPAM. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
魏志勇  齐民 《高分子科学》2013,31(8):1148-1160
A series of nanocomposites based on poly(ε-caprolactone) (PCL) and graphene oxide (GO) were prepared by in situ polymerization. Scanning electron microscopy observation revealed not only a well dispersion of GO but also a strong interfacial interaction between GO and the PCL matrix, as evidenced by the presence of some GO nanosheets embedded in the matrix. Effects of GO nanofillers on the crystal structure, crystallization behavior and spherulitic morphology of the PCL matrix were investigated in detail. The results showed that the crystallization temperature of PCL enhanced significantly due to the presence of GO in the nanocomposites, however, the addition of GO did not affect the crystal structure greatly. Thermal stability of PCL remarkably increased with the addition of GO nanosheets, compared with that of pure PCL. Incorporation of GO greatly improved the tensile strength and Young’s modulus of PCL without a significant loss of the elongation at break.  相似文献   

10.
《中国化学快报》2020,31(10):2525-2538
From emerging pollutants to emerged threat, researchers are continuously looking for promising technologies for wastewater treatment. Adsorption has been identified as the most convenient approach for treating wastewater at low-cost and with high-efficiency. Recently, graphene and its derivatives have gained heightened attention as novel adsorbents because of their unique molecular structure and outstanding physicochemical properties. Heavy metals, dyes, polycyclic aromatic hydrocarbons (PAHs) and other pollutants, which are widely concerned recently, all show different adsorption behaviors. Numerous functional groups, resonating and delocalized π-electron system of graphene derivatives lead to the formation of various adsorptive interactions i.e., π-π interactions, electrostatic interactions, H-bonding, etc. with these venomous pollutants, and quarantine them in solution. The pristine form of graphene subsidiaries tends to exhibit low sorption efficiency due to high propensity of agglomeration, lack of selectivity, hydrophobicity and difficulty in phase separation after treatment. Therefore, designing of efficient graphene composites through the surface modification with numerous functional groups, polymers or nanoparticles is an ongoing challenge. Complex graphene composites are increasingly reported, but the fate of pollutants and adsorption mechanisms are still far to be fully clarified. This review summarizes the recent progresses in the application of graphene-based adsorbents for eliminating a wide range of organic and inorganic pollutants from wastewater. A critical explanation is provided on the synthesis of graphene adsorbents, systematic adsorption and desorption mechanisms along with their pollutant removal performances under different experimental conditions. A brief perspective on upcoming research needs and challenges involved in the designing of high-quality graphene-based adsorbents are highlighted.  相似文献   

11.
This paper reports on a novel low-temperature method for preparing curcumin-reduced graphene oxide (Cur-rGO) from graphene oxide (GO) and investigates their cyclic voltammetry (CV) and photoluminescence (PL) properties. GO sheets were synthesized using modified Hummers’ method and then were chemically reduced using polyphenol curcumin into graphene sheets. Atomic force microscopy, transmission electron microscopy and x-ray photoelectron spectroscopy were used to confirm the formation of Cur-rGO and revealed their functionalization with polyphenol curcumin. The electrochemical and optical properties of the Cur-rGO sheets were investigated using CV and PL spectroscopy. According to the PL and CV characterization for the Cur-rGO sheets, charges and resonant energy were transferred from curcumin molecules to the GO sheets’ surfaces. This arises from the bonding of the fluorescence curcumin molecules to the Cur-rGO surfaces, through π–π stacking of their aromatic rings. It should be noted that curcumin molecules act as electron donors, suppressing the fluorescence of the GO sheets while improving their electrochemical activities.  相似文献   

12.
Efficient and scalable production of high-quality and processable two-dimensional (2D) polymers are highly desired but have not yet been reported. Herein, we demonstrate a convenient noncovalent functionalization strategy for producing highly uniform, aqueous processable and semiconducting 2D triazine polymers. Experimental and theoretical analysis reveal that the aromatic amphiphilic 1-pyrenebutyrate can adsorb and intercalate into the interlayer of bulk crystalline covalent triazine framework (CTF) through noncovalent π-π stacking interaction between the pyrene moiety and the porous basal plane of 2D triazine polymer layer, which greatly facilitate the exfoliation of CTF in water in large scale. The as-prepared highly water-dispersible single-layer/few-layer 2D triazine polymer nanosheets can be easily processed into ultralight aerogels with a density of 5–15 mg cm−3, which can be further shaped into mechanically strong films upon simple compression. This noncovalent functionalization not only improve the dispersibility and processability of 2D triazine polymer, but also optimize its band structure and promote the photogenerated carrier separation via an interesting surface molecule doping effect, thus resulting in a remarkable photocatalytic hydrogen evolution rate of 1249 μmol h−1 (24980 μmol g−1 h−1) and apparent quantum efficiency up to 27.2 % at 420 nm for the 2D triazine polymer, outperforming most metal-free photocatalysts ever reported.  相似文献   

13.
Noncovalent π stacking of aromatic molecules is a universal form of noncovalent interactions normally occurring on planar structures (such as aromatic molecules and graphene) based on sp2-hybridized atoms. Here we reveal a new type of noncovalent surface–π stacking unusually occurring between aromatic groups and peroxide-modified titania (PMT) nanosheets, which can drive versatile aromatic adsorptions. We experimentally explore the underlying electronic-level origin by probing the perturbed changes of unoccupied Ti 3d states with near-edge X-ray absorption fine structures (NEXAFS), and find that aromatic groups can vertically attract π electrons in the surface peroxo-Ti states and increase their delocalization regions. Our discovery updates the concept of noncovalent π-stacking interactions by extending the substrates from carbon-based structures to a transition metal oxide, and presents an approach to exploit the surface chemistry of nanomaterials based on noncovalent interactions.

A new type of noncovalent surface–π stacking interaction occurring on a transition metal oxide, titania, is reported, which is different from the traditional forms on sp2-hybridized planar structures like graphene.  相似文献   

14.
High‐quality reduced graphene, termed PG, has been synthesized by a simple, low‐cost, and green plasma approach, and applied as adsorbent to remove 4,4′‐dichloribiphenyl (4,4′‐DCB) from aqueous solutions. As a comparison, the adsorption of 4,4′‐DCB on graphene oxide (GO) and multiwalled carbon nanotubes (MWCNTs) was also studied under the same experimental conditions. PG performs significantly better with regard to 4,4′‐DCB adsorption than GO and MWCNTs, or any reported nanomaterials, with a maximum adsorption capacity (qmax) of 1552 mg g?1 at pH 7.0. The high affinity of 4,4′‐DCB to PG is mainly a result of strong π–π interactions, as also confirmed by DFT calculations. The results reveal that PG sheets hold promise for the removal of persistent organic pollutants. We expect possible applications of this fast and mild plasma technique in the fabrication of nanomaterials and envisage their use in a variety of advanced chemical processes.  相似文献   

15.
The dark process (posteffect) of increasing the electrical conductivity and spectral absorption in the graphene oxide (GO) film after its preliminary UV irradiation has been studied. The posteffect is due to the conformational relaxation of the structure (flattening) of GO nanosheets after the UV-induced dissociation of oxygen-containing groups. At room temperature, the relaxation time is τ ≈ 300 h and the activation energy in the range of 20–70°C is E a ≈ 0.6 eV.  相似文献   

16.
A new and heterogeneous copper complex immobilized on graphene oxide (GO) was prepared. This was achieved through organic functionalization of GO using 1,8-diamino-3,6-dioxaoctane (DADO) and then inorganic coordination of copper on the edges and basal plane of the functionalized GO (GO-DADO-Cu), which was reduced to Cu(0). The chemical structure of the prepared nanocatalyst was analyzed using various techniques. Most of the analyses confirmed the successful anchoring of copper and organic ligand on the GO surface. Moreover, the synthesized nanocatalyst has shown high catalytic activity in the synthesis of β-hydroxy-1,2,3-triazole derivatives under mild reaction conditions (water and room temperature) resulting in good to excellent yields.  相似文献   

17.
Growth of silicalite with graphene oxide (GO) nanosheets occurred via attachment of GO onto the silicalite surface, and entrapment of GO nanosheets inside single crystals. Electrically conductive composites were produced by calcination in nitrogen whereas silicalite crystals with slit-like mesopores of sizes 20-25 ? were obtained after GO burn-off.  相似文献   

18.
The interaction between DNA and inorganic surfaces has attracted intense research interest, as a detailed understanding of adsorption and desorption is required for DNA microarray optimization, biosensor development, and nanoparticle functionalization. One of the most commonly studied surfaces is gold due to its unique optical and electric properties. Through various surface science tools, it was found that thiolated DNA can interact with gold not only via the thiol group but also through the DNA bases. Most of the previous work has been performed with planar gold surfaces. However, knowledge gained from planar gold may not be directly applicable to gold nanoparticles (AuNPs) for several reasons. First, DNA adsorption affinity is a function of AuNP size. Second, DNA may interact with AuNPs differently due to the high curvature. Finally, the colloidal stability of AuNPs confines salt concentration, whereas there is no such limit for planar gold. In addition to gold, graphene oxide (GO) has emerged as a new material for interfacing with DNA. GO and AuNPs share many similar properties for DNA adsorption; both have negatively charged surfaces but can still strongly adsorb DNA, and both are excellent fluorescence quenchers. Similar analytical and biomedical applications have been demonstrated with these two surfaces. The nature of the attractive force however, is different for each of these. DNA adsorption on AuNPs occurs via specific chemical interactions but adsorption on GO occurs via aromatic stacking and hydrophobic interactions. Herein, we summarize the recent developments in studying non-thiolated DNA adsorption and desorption as a function of salt, pH, temperature and DNA secondary structures. Potential future directions and applications are also discussed.  相似文献   

19.
《中国化学快报》2021,32(9):2851-2855
More and more attentions have been focused on design and synthesis of novel metal-organic framework/graphene oxide (MOF/GO) composites with unique performance. Zirconium-porphyrin MOF (PCN-222) is in-situ synthesis with the existence of GO with −COOH group to artfully fabricate a PCN-222/GO composite. This composite can be employed as functional material to modify the working electrode. Thanks to excellent electrical conductivity of GO, abundant mesoporous channels and numerous Zr(IV) metal sites of PCN-222, this composite can immobilize a large amount of aptamer through strong π-π stacking interaction and high affinity between phosphate group of aptamer and Zr(IV) site of PCN-222 simultaneously. Hence, an ultra-sensitive electrochemical aptasensor based on PCN-222/GO composite can quantificationally detect trace chloramphenicol with limit of detection of 7.04 pg/mL (21.79 pmol/L) from 0.01 ng/mL to 50 ng/mL by electrochemical impedance spectroscopy even in real samples. Meanwhile, this fabricated aptasensor reveals good repeatability, outstanding selectivity and preferable long-term storage. This research provides a useful approach to construct MOF/GO composites for fabricating electrochemical aptasensors in the electrochemical detection field.  相似文献   

20.
Doping and functionalization could significantly assist in the improvement of the electrochemical properties of graphene derivatives. Herein, we report a one-pot synthesis of fluorinated graphene oxide (FGO) from graphite. The surface morphology, functionalities and composition of the resulting FGO have been studied using various surface characterization techniques, revealing that layer-structured nanosheets with ~ 1.0 at.% F were formed. The carbon bound F exhibited semi-ionic bonding characteristic and significantly increased the capacitance of FGO compared to GO. Further, the FGO has been employed for the simultaneous detection of heavy metal ions Cd2 +, Pb2 +, Cu2 + and Hg2 + using square wave anodic stripping voltammetry; and a substantial improvement in the electrochemical sensing performance is achieved in comparison with GO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号