首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A k-colouring(not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colours i and j the subgraph induced by the edges whose endpoints have colours i and j is acyclic. We consider acyclic k-colourings such that each colour class induces a graph with a given(hereditary) property. In particular, we consider acyclic k-colourings in which each colour class induces a graph with maximum degree at most t, which are referred to as acyclic t-improper k-colourings. The acyclic t-improper chromatic number of a graph G is the smallest k for which there exists an acyclic t-improper k-colouring of G. We focus on acyclic colourings of graphs with maximum degree 4. We prove that 3 is an upper bound for the acyclic 3-improper chromatic number of this class of graphs. We also provide a non-trivial family of graphs with maximum degree4 whose acyclic 3-improper chromatic number is at most 2, namely, the graphs with maximum average degree at most 3. Finally, we prove that any graph G with Δ(G) 4 can be acyclically coloured with 4 colours in such a way that each colour class induces an acyclic graph with maximum degree at most 3.  相似文献   

3.
We study backbone colorings, a variation on classical vertex colorings: Given a graph G and a subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex k-coloring of G in which the colors assigned to adjacent vertices in H differ by at least 2. The minimal kN for which such a coloring exists is called the backbone chromatic number of G. We show that for a graph G of maximum degree Δ where the backbone graph is a d-degenerated subgraph of G, the backbone chromatic number is at most Δ+d+1 and moreover, in the case when the backbone graph being a matching we prove that the backbone chromatic number is at most Δ+1. We also present examples where these bounds are attained.Finally, the asymptotic behavior of the backbone chromatic number is studied regarding the degrees of G and H. We prove for any sparse graph G that if the maximum degree of a backbone graph is small compared to the maximum degree of G, then the backbone chromatic number is at most .  相似文献   

4.
We consider the following edge coloring game on a graph G. Given t distinct colors, two players Alice and Bob, with Alice moving first, alternately select an uncolored edge e of G and assign it a color different from the colors of edges adjacent to e. Bob wins if, at any stage of the game, there is an uncolored edge adjacent to colored edges in all t colors; otherwise Alice wins. Note that when Alice wins, all edges of G are properly colored. The game chromatic index of a graph G is the minimum number of colors for which Alice has a winning strategy. In this paper, we study the edge coloring game on k‐degenerate graphs. We prove that the game chromatic index of a k‐degenerate graph is at most Δ + 3k − 1, where Δ is the maximum vertex degree of the graph. We also show that the game chromatic index of a forest of maximum degree 3 is at most 4 when the forest contains an odd number of edges. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 144–155, 2001  相似文献   

5.
A vertex distinguishing edge coloring of a graph G is a proper edge coloring of G such that any pair of vertices has the distinct sets of colors. The minimum number of colors required for a vertex distinguishing edge coloring of a graph G is denoted by ???? s (G). In this paper, we obtained upper bounds on the vertex distinguishing chromatic index of 3-regular Halin graphs and Halin graphs with ??(G) ?? 4, respectively.  相似文献   

6.
An edge-coloring of a graph G with integers is called an interval coloring if all colors are used, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. It is known that not all graphs have interval colorings, and therefore it is expedient to consider a measure of closeness for a graph to be interval colorable. In this paper we introduce such a measure (resistance of a graph) and we determine the exact value of the resistance for some classes of graphs.  相似文献   

7.
A strong edge-coloring of a graph is a proper edge-coloring such that edges at distance at most 2 receive different colors. It is known that every planar graph has a strong edge-coloring by using at most 4Δ+4 colors, where Δ denotes the maximum degree of the graph. In this paper, we will show that 19 colors are enough to color a planar graph with maximum degree 4.  相似文献   

8.
The strong chromatic index s(G) is the minimum integer t such that there is an edge-coloring of G with t colors in which every color class is an induced matching. Brualdi and Quinn conjecture that for every bipartite graph G, s(G) is bounded by Δ1Δ2, where Δ1 and Δ2 are the maximum degrees among vertices in the two partite sets. We give the affirmative answer for Δ1=2.  相似文献   

9.
The center of a graph is the set of vertices with minimum eccentricity. Graphs in which all vertices are central are called self-centered graphs. In this paper almost self-centered (ASC) graphs are introduced as the graphs with exactly two non-central vertices. The block structure of these graphs is described and constructions for generating such graphs are proposed. Embeddings of arbitrary graphs into ASC graphs are studied. In particular it is shown that any graph can be embedded into an ASC graph of prescribed radius. Embeddings into ASC graphs of radius two are studied in more detail. ASC index of a graph G is introduced as the smallest number of vertices needed to add to G such that G is an induced subgraph of an ASC graph.  相似文献   

10.
A k-coloring (not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colors i and j the subgraph induced by the edges whose endpoints have colors i and j is acyclic. We consider some generalized acyclic k-colorings, namely, we require that each color class induces an acyclic or bounded degree graph. Mainly we focus on graphs with maximum degree 5. We prove that any such graph has an acyclic 5-coloring such that each color class induces an acyclic graph with maximum degree at most 4. We prove that the problem of deciding whether a graph G has an acyclic 2-coloring in which each color class induces a graph with maximum degree at most 3 is NP-complete, even for graphs with maximum degree 5. We also give a linear-time algorithm for an acyclic t-improper coloring of any graph with maximum degree d assuming that the number of colors is large enough.  相似文献   

11.
《Discrete Mathematics》2023,346(1):113162
The graph coloring game is a two-player game in which the two players properly color an uncolored vertex of G alternately. The first player wins the game if all vertices of G are colored, and the second wins otherwise. The game chromatic number of a graph G is the minimum integer k such that the first player has a winning strategy for the graph coloring game on G with k colors. There is a lot of literature on the game chromatic number of graph products, e.g., the Cartesian product and the lexicographic product. In this paper, we investigate the game chromatic number of the strong product of graphs, which is one of major graph products. In particular, we completely determine the game chromatic number of the strong product of a double star and a complete graph. Moreover, we estimate the game chromatic number of some King's graphs, which are the strong products of two paths.  相似文献   

12.
The Grundy (or First-Fit) chromatic number of a graph G is the maximum number of colors used by the First-Fit coloring of the graph G. In this paper we give upper bounds for the Grundy number of graphs in terms of vertex degrees, girth, clique partition number and for the line graphs. Next we show that if the Grundy number of a graph is large enough then the graph contains a subgraph of prescribed large girth and Grundy number.  相似文献   

13.
A vertex coloring of a graph G is an assignment of colors to the vertices of G so that every two adjacent vertices of G have different colors. A coloring related property of a graphs is also an assignment of colors or labels to the vertices of a graph, in which the process of labeling is done according to an extra condition. A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those structures of a graph that satisfy some domination property together with other conditions on the vertices of G. In this article we study several mathematical properties related to coloring, domination and location of corona graphs. We investigate the distance-k colorings of corona graphs. Particularly, we obtain tight bounds for the distance-2 chromatic number and distance-3 chromatic number of corona graphs, through some relationships between the distance-k chromatic number of corona graphs and the distance-k chromatic number of its factors. Moreover, we give the exact value of the distance-k chromatic number of the corona of a path and an arbitrary graph. On the other hand, we obtain bounds for the Roman dominating number and the locating–domination number of corona graphs. We give closed formulaes for the k-domination number, the distance-k domination number, the independence domination number, the domatic number and the idomatic number of corona graphs.  相似文献   

14.
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number of the graph G is the smallest number of colors in a linear coloring of G. In this paper we prove that every planar graph G with girth g and maximum degree Δ has if G satisfies one of the following four conditions: (1) g≥13 and Δ≥3; (2) g≥11 and Δ≥5; (3) g≥9 and Δ≥7; (4) g≥7 and Δ≥13. Moreover, we give better upper bounds of linear chromatic number for planar graphs with girth 5 or 6.  相似文献   

15.
It was conjectured by Kronk and Mitchem in 1973 that simple plane graphs of maximum degree Δ are entirely (Δ+4)-colourable, i.e., the vertices, edges, and faces of a simple plane graph may be simultaneously coloured with Δ+4 colours in such a way that adjacent or incident elements are coloured by distinct colours. Before this paper, the conjecture has been confirmed for Δ?3 and Δ?6 (the proof for the Δ=6 case has a correctable error). In this paper, we settle the whole conjecture in the positive. We prove that if G is a plane graph with maximum degree 4 (parallel edges allowed), then G is entirely 8-colourable. If G is a plane graph with maximum degree 5 (parallel edges allowed), then G is entirely 9-colourable.  相似文献   

16.
A strong k-edge-coloring of a graph G is an assignment of k colors to the edges of G in such a way that any two edges meeting at a common vertex, or being adjacent to the same edge of G, are assigned different colors. The strong chromatic index of G is the smallest integer k for which G has a strong k-edge-coloring. In this paper, we have shown that the strong chromatic index is no larger than 6 for outerplanar graphs with maximum degree 3.  相似文献   

17.
We study the degenerate, the star and the degenerate star chromatic numbers and their relation to the genus of graphs. As a tool we prove the following strengthening of a result of Fertin et al. (2004) [8]: If G is a graph of maximum degree Δ, then G admits a degenerate star coloring using O(Δ3/2) colors. We use this result to prove that every graph of genus g admits a degenerate star coloring with O(g3/5) colors. It is also shown that these results are sharp up to a logarithmic factor.  相似文献   

18.
For any graph G, the k-improper chromatic numberχk(G) is the smallest number of colours used in a colouring of G such that each colour class induces a subgraph of maximum degree k. We investigate χk for unit disk graphs and random unit disk graphs to generalise results of McDiarmid and Reed [Colouring proximity graphs in the plane, Discrete Math. 199(1-3) (1999) 123-137], McDiarmid [Random channel assignment in the plane, Random Structures Algorithms 22(2) (2003) 187-212], and McDiarmid and Müller [On the chromatic number of random geometric graphs, submitted for publication].  相似文献   

19.
A bicyclic graph is a connected graph in which the number of edges equals the number of vertices plus one. Let Δ(G) and ρ(G) denote the maximum degree and the spectral radius of a graph G, respectively. Let B(n) be the set of bicyclic graphs on n vertices, and B(n,Δ)={GB(n)∣Δ(G)=Δ}. When Δ≥(n+3)/2 we characterize the graph which alone maximizes the spectral radius among all the graphs in B(n,Δ). It is also proved that for two graphs G1 and G2 in B(n), if Δ(G1)>Δ(G2) and Δ(G1)≥⌈7n/9⌉+9, then ρ(G1)>ρ(G2).  相似文献   

20.
Fiber-complemented graphs form a vast non-bipartite generalization of median graphs. Using a certain natural coloring of edges, induced by parallelism relation between prefibers of a fiber-complemented graph, we introduce the crossing graph of a fiber-complemented graph G as the graph whose vertices are colors, and two colors are adjacent if they cross on some induced 4-cycle in G. We show that a fiber-complemented graph is 2-connected if and only if its crossing graph is connected. We characterize those fiber-complemented graphs whose crossing graph is complete, and also those whose crossing graph is chordal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号