首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We calculated the formation energy of single vacancy in V-doped ZnO in different conditions (oxygen or zinc rich) by first principles. Effect of an intrinsic vacancy on the electronic density of states and magnetic moment of V-doped ZnO (Zn15VO16) with and without single vacancy was also calculated. Our calculation was performed by the CASTEP program within spin-polarized GGA approximation implemented in materials studio software. The formation energy showed that oxygen vacancy inclined to stay far from vanadium (V) and zinc vacancy preferred to stay at a position near V. The calculated formation energy also showed that a zinc vacancy may automatically occur but an oxygen vacancy may not appear automatically. Vanadium doping introduced spin-polarization around Fermi level. For an energy favorable vacancy, an oxygen vacancy had little effect on the electronic density of states. A zinc vacancy made the spin-polarization peaks around Fermi level broaden and decreased their magnitude. For the magnetic moment in energy favorable configurations, an oxygen vacancy had little effect on the magnetic moment; a zinc vacancy significantly decreased the magnetic moment (as high as 63.7%). Changes in magnetic moments were consistent with electronic density of states. Our calculation may interpret various experimental magnetic moment values. Our work also provided a reference for preparing V-doped ZnO-based dilute magnetic semiconductors.  相似文献   

2.
Electron surface states ond-band metals are investigated by the method of matching the crystal wave function to the outside solution at the surface. On a (100) surface of anfcc structure such a state is found near to the crossover of thes-band and thed-band of the same symmetry. In Ni this state lies 4–5 eV below the Fermi energy, for Cu 5–6 V beloweE F. It explains the density of states anomaly seen in photoemission.  相似文献   

3.
M. Tomášek  Š. Pick 《Surface science》1984,140(2):L279-L284
A simple qualitative theory of the reconstruction of the W (001) surface based on the assumption of an important role of Shockley surface states from the vicinity of the Fermi energy in the electron-phonon interaction is presented. While translational symmetry chooses state coupling via the pseudo-Jahn-Teller effect, the local symmetry determines the magnitude of the corresponding matrix elements. It appears that the in-plane reconstruction modes M?5 and X?3 are more promising whereas the buckled modes seem unfavourable since they lead to an ionic superstructure on the surface.  相似文献   

4.
Structure and energy related properties of neutral and charged vacancies on relaxed diamond (1 0 0) (2 × 1) surface were investigated by means of density functional theory. Calculations indicate that the diffusion of a single vacancy from the top surface layer to the second layer is not energetically favored. Analysis of energies in charged system shows that neutral state is most stable on diamond (1 0 0) (2 × 1) surface. The multiplicity of possible states can exist on diamond (1 0 0) surface in dependence on the surface Fermi level, which supports that surface diffusion of a vacancy is mediated by the change of vacancy charge states. Analysis of density of states shows surface vacancy can be effectively measured by photoelectricity technology.  相似文献   

5.
6.
We present a calculation of the spectral density of states for crystals of TiO and VO with (001) cleaved surfaces. The transfer matrix formalism is employed, with a hamiltonian including the O 2p and the metal 3d orbitals. Slater-Koster parameters obtained by Mattheiss (1972) from a bulk calculation are used. The results are obtained at three special points in the 2D Brillouin zone for three different (001) planes: surface plane, plane immediately below it and bulk plane. In the neighborhood of the point M there is an intrinsic surface state and a surface resonance due to the hybridization between ligand and metal orbitals. The surface state has mixed eg and pz symmetry along the Σ symmetry line and lies above the Fermi level. No surface relaxation or reconstruction is considered.  相似文献   

7.
利用同步辐射角分辨光电子能谱(SRARPES)对6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)] R30°重构表面的电子结构和表面态进行了研究.通过鉴别价带谱中来自于体态的信息,可以推断出重构表面的费米能级位于体态价带顶之上(2.1±0.1)eV处.实验测出的体能带结构与理论计算的结果较为符合.在重构表面上发现三个表面态,分别位于结合能-0.48 eV(S0),-1.62 eV(S1)和-4. 关键词: 角分辨光电子能谱 碳化硅(SiC) 电子结构 表面态  相似文献   

8.
The lateral confinement of the surface state electrons of Cu(111) has been studied by Scanning Tunnelling Microscopy and Spectroscopy at low temperature. The confining nanostructures are Cu(111) islands embedded in a semiconducting Cu3N(111) film which completely isolate them from each other. The standing wave pattern observed reflect the shape of the edge of the islands, i.e. the positions of the confining potential as long as the islands are larger than twice the Fermi wavelength of the surface electrons. The interference pattern in smaller islands is more complex, reflecting the collective behavior of the electrons. When the width of the islands is, at least in one dimension, smaller than the Fermi wavelength, there is a clear shift in the energy of the bottom of the surface band towards the Fermi level. The depopulation of the surface state produced by lateral confinement might have important consequences with respect to the reactivity of these nanostructures.Received: 15 December 2003, Published online: 10 August 2004PACS: 68.37.Ef Scanning tunneling microscopy (including chemistry induced with STM) - 73.20.At Surface states, band structure, electron density of states - 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals  相似文献   

9.
The spatial structure of a vacancy and the properties of its electronic energy levels in a semiconductor with a lattice possessing point symmetry T d are considered for an arbitrary relationship between the Jahn-Teller stabilization energy (associated with the F 2 vibrational mode) and the t 2-a 1 splitting (Δ) caused by the cubic crystal field. The position of the minimum of the adiabatic potential and the distortion of the electronic density are calculated for the vacancy ground state for different relative values of Δ and coupling constants of the vacancy to the F 2 vibrational mode. It is shown that, if the ground state of a carrier bound to a vacancy is a t 2 state, the trigonal symmetry of the environment of the vacancy persists for any values of Δ, but the amount of displacements of atoms near the vacancy and the localization of the wave function of the bound carrier on the broken bond earmarked by the Jahn-Teller effect can depend heavily on Δ and are maximal at Δ → 0. This is also the case when the ground state of the vacancy is the a 1 state, but the magnitude of Δ does not exceed a certain value, which is determined by the coupling constants and the elastic constant. The relation between Δ and the coupling constants is also shown to affect the properties of trigonal vacancy-shallow-donor complexes. For these complexes, calculations are performed of the dependence of the dipole direction determining the optical properties of the vacancy defect on the distortion of vacancy orbitals caused by the donor entering into the complex.  相似文献   

10.
Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.  相似文献   

11.
Using ab initio calculations, we have studied the modification of the electronic structure of the MoS2(0001) surface by several point defects: a surface S vacancy and different transition metal atoms substituting a S atom (Pd, Au, Fe, and V). With a S vacancy, a gap state appears with weight mostly on the Mo and S atoms surrounding the vacancy. The substitutional atoms of complete d band (Pd and Au) do not present magnetic polarization and slightly modify the DOS near the Fermi energy. On the other hand, the incomplete d band atoms (Fe and V) present spin polarization and modify significantly the states near the band edges. From calculated STM images and STS curves, we show that this chemical signature can be measured and used to characterize the surface defects of the substrate which are suitable nucleation centers for nanocluster growth.  相似文献   

12.
We investigated the electronic structure of an ideal vacancy in the Si(111) thin film by using empirical tight binding method. The supercell model used in our calculations predicted vacancy related states in general agreement with previous works. For the vacancy near the surface, it is found that the bound state energies shift to higher energies as the vacancy moves toward the surface. At the surface, however, it was seen that the vacancy bound state mix with the dangling bond surface states. Considering energy locations in the bond gap, we propose that vacancies created in the surfaceregion may account for the peak (at about ~0.5 eV above the valence band edge) in the density of interface states observed at the interface of the Si-SiO2 junction.  相似文献   

13.
Based on first-principles calculations within density functional theory, we studied the effects of Cr adsorption on the electronic and magnetic properties of Bi2Se3 topological insulators employing spin–orbit coupling (SOC) self-consistently. Cr atom induces a spin-polarization with total net magnetic moments of 2.157 μB (spin up). There is a p-d hybridization between the Cr 3d states and the nearest neighbor Se 4p states. A peak of density of states appears at Fermi level. The electronic structures change and the energy levels split near the Fermi level. No gap opening has been found at the Dirac point of the surface state from the bottom surface.  相似文献   

14.
We investigate the possibility of inducing ferromagnetic order in 4d and 5d late transition metals through crystal symmetry change. First principles, self-consistent density functional theory calculations, with spin-orbit coupling included, performed at 0 K show that ferromagnetism occurs in the bulk of Rh and Pd at the optimum lattice constant if Rh is in the bcc and Pd in the hcp/dhcp phase. The ferromagnetic order originates in the d-band occupancy of Rh or Pd which locates the Fermi energy at the top of the highest peak of the respective (paramagnetic) density of states induced by the bcc or hcp/dhcp structure. This peak in the density of states is caused by flat bands which lie at the surface of the respective Brillouin zone. For a bcc crystal these flat bands have the eg character and are positioned at the surface of the bcc Brillouin zone along the N-P line. The origin of the flatness of the bands was found to be the translation symmetry of the cubic lattice which causes the bands with the eg character to be narrow along the k-lines whose k-vector directions are furthest off the directions to which the orbitals of the eg symmetry point. Due to the d-band occupancy of Rh these flat bands lie in the paramagnetic state at the Fermi energy, whereas in the ferromagnetic state they exhibit the largest energetic split. This indicates that a smaller degree of orbital overlap narrows electronic bands enhancing the tendency of the system for ferromagnetic band split. For the hcp/dhcp structure the states contributing to the high density of para-magnetic states at the Fermi level of Pd lie in the vicinity of the M-L line of the hcp Brillouin zone boundary, which possesses a high number of symmetry (M and L) points. Moreover, the M-L line is aligned with the stacking sequence direction ([0001]) which is furthest off the densest-packed atomic chain direction of an hcp-crystal and, consequently, the weakest-bond direction in the crystal. This makes the narrow bands along the M-L line flat. The instability of the bcc and the meta-stability of the hcp crystal phase modifications for metals with native close-packed crystal structures is subsequently analysed in order to find whether they can be grown as films on suitable substrates.  相似文献   

15.
The photoconductivity of BaTiO2.5 with oxygen vacancy has been studied by the linear muffin-tin orbital method in the atomic sphere approximation (LMTO-ASA). The ground-state structure of BaTiO2.5 is obtained by minimization of the total energy. The partial densities of states show that the occupied states at the bottom of the conduction band have primarily Ti d orbital character. The photoconductivity shows that two novel features, in the low energy side, can be attributed to the intraband transition of free electronic carriers in the vicinity of the Fermi level and the interband transition of the Ti 3d(yz) related band states, to the Ti 3d(xy,xz) related band states, respectively. In addition, it is also found that the anisotropy of photoconductivity is enhanced because of the introduction of oxygen vacancy. The system can show the conductive behavior of electronic carriers, which is qualitatively in agreement with a recent experimental finding.  相似文献   

16.
Surface states that have a dz2 symmetry around the center of the surface Brillouin zone(BZ)have been regarded common in closely-packed surfaces of rare-earth metals.In this work,we report the electronic structure of dhcp La(0001)thin films by ultrahigh energy resolution angle-resolved photoemission spectroscopy(ARPES)and first principle calculations.Our first principle analysis is based on the many-body approach,therefore,density function theory(DFT)combined with dynamic mean-field theory(DMFT).The experimentally observed Fermi surface topology and band structure close to the Fermi energy qualitatively agree with first principle calculations when using a renormalization factor of between 2 and 3 for the DFT bands.Photon energy dependent ARPES measurements revealed clear kZ dependence for the hole-like band around the BZ center,previously regarded as a surface state.The obtained ARPES results and theoretical calculations suggest that the major bands of dhcp La(0001)near the Fermi level originate from the bulk La 5d orbits as opposed to originating from the surface states.  相似文献   

17.
Cope rearrangement mechanisms and the homoaromaticity of semibullvalene, barbaralane, and 1,5‐methanosemibullvalene in the ground and lowest excited states were studied by ab initio methods. In the ground state, the rearrangement reactions of semibullvalene and barbaralane occurred concertedly through the transition states with C2v symmetry, and the transition states had a homoaromatic nature. In particular, the transition state of barbaralane exhibited the strongest homoaromaticity among the three systems treated here. On the other hand, for 7,8‐methanosemibullvalene, the structure with C2v symmetry was not a transition state but one with a stable energy minimum. The energy minimum structure with C2v symmetry had a biradical character. The lowest excited states of semibullvalene and barbaralane were the excitation to the σ* anti‐orbital, 1B2 and 1B1 states, and led to near di‐allyl states. The lowest excitation state of 1,5‐methanosemibullvalene had Cs symmetry and was the A″ state excitation in one side of two allyl parts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The experimental band structure of Mo(112) and the effects by temperature and adsorbate are presented. A surface resonance, identified as crossing the Fermi level at about 1/3 from to of surface Brillouin zone, was observed to be very sensitive to both contamination and temperature. We find evidence of adsorbate and temperature induced reconstruction of the Mo(112) surface. Examination of low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) data provides evidence for an adsorbate induced reconstruction of the Mo(112) surface with periodicities consistent with the Fermi level crossing of the surface resonance. The reconstruction is found to occur at coverages as low as 0.03 Langmuirs of oxygen or carbon. The reconstruction and/or adsorbate affects the density of states and bands near the Fermi level of a 1 symmetry. Received 3 March 1999 and Received in final form 1 October 1999  相似文献   

19.
H. Chow 《Surface science》1977,66(1):221-237
Bound state resonances related to the band structure of adsorbed atoms and their usefulness for determining the periodic components of atom-solid interaction potential are theoretically investigated. A variety of specular intensity patterns associated with bound state resonances near the Brillouin zone boundaries are exhibited. The (10) and (11̄) bound state resonances give rise to two split specular minima with the splitting depending essentially on v10 for a fixed beam energy; however, the detailed features are dependent on other periodic components. For incidence along a crystal symmetry direction, symmetrization of basis states not only makes numerical computation very efficient, but also implies that there is only one specular minimum for a pair of bound states which are equivalent by symmetry. The (01) and (10) resonances along and near the x = y direction are presented to illustrate the symmetrization principle. The depth of one of the specular minima decreases and finally vanishes as the symmetry direction is approached. The single specular minimum corresponds to a resonance with the bound state which is a symmetric linear combination of (01) and (10) states in a potential well of v0 + V11. As expected, the shift in positions of specular minima caused by the periodic surface potential increases with decreasing beam energy.  相似文献   

20.
The electronic structure of the d band of both flat and stepped Pt surfaces is investigated within the tight-binding approximation, using a moment method. A sharp surface virtual bound state peak is found in the local density of states at the protruding edge of the stepped surfaces and the symmetry of states near the Fermi level are found to be rather dependent on the geometry of the surface. Possible connections with experiments are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号