首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The multimode Jahn-Teller effect for an impurity in the Γ8 ground state of a double point group is considered. The vibronic coupling with the trigonal (t2) crystal vibrations is taken into account. It is shown that the vibronic coupling leads to the appearance of local and pseudolocal electron-phonon states. The spectral and symmetry characteristics of these states are obtained.  相似文献   

2.
冯胜奇  邱庆春 《物理学报》2011,60(5):57106-057106
依据量子理论与配位场理论,利用群论和对称性分析的方法探讨了C2+4分子在具有D4h对称性构型时,E×(b1g+b2g)系统的Jahn-Teller效应中的相关问题.研究了C2+4分子的电子态与声子态的对称性及其活跃声子态,讨论了系统声子间的耦合与CG系数,构建了E×(b1g+b2g 关键词: 2+4分子')" href="#">C2+4分子 对称性 能级分裂 Jahn-Teller畸变  相似文献   

3.
About 350 lines in the microwave spectrum of NF2 have been measured in various ranges of frequency between 13.0 and 65.2 GHz by using two types of Zeeman effect spectrometers. Complete assignment of all lines has been achieved and, via the general microwave computer program SPINRO, the rotational constants, centrifugal distortion constants, dipole moment, electronic spin-rotation coupling constants, the constants for the coupling of the several nuclear spins with the electron spin and the nitrogen quadrupole coupling constants have all been obtained.By drawing upon the observed vibrational frequencies the average geometry of NF2 has been evaluated. Force constants and Coriolis coupling constants have also been derived.The values of the spin coupling constants for N and for F indicate that NF2 is a π-radical with the spin density mainly located on nitrogen. The multiplet patterns indicate that the ground electronic state wavefunction is antisymmetric to rotation about the molecular symmetry axis and so, for a π-radical, identifies the ground state as 2B1 as has previously been assumed for this molecule.  相似文献   

4.
The general form of the reduction factors for a fourfold degenerate Γ8 state in cubic symmetry is obtained for linear Jahn-Teller coupling to one or more vibrational modes of E(Γ3) and/or T2(Γ5) symmetry.  相似文献   

5.
The microwave spectra of three isotopic species of chloryl fluoride, FClO2, in its ground vibrational state, have been measured in the frequency region 8–37 GHz. The spectra have yielded values for the rotational constants, centrifugal distortion constants, and chlorine nuclear quadrupole coupling constants, as well as the molecular dipole moment, 1.722 ± 0.03 D. The molecule has been shown to have Cs symmetry, and a pyramidal configuration, with the chlorine atom at the apex of the pyramid. The following internuclear parameters were obtained:r(Cl?F)1.697±0.003 A r(Cl?F)=1.418±0.002AThe structural parameters, quadrupole coupling constants, dipole moment and force field are explained in terms of a bonding scheme in which a fluorine 2p atomic orbital overlaps with the highest occupied orbital of ClO2; there is considerable evidence for withdrawal of electron density from this singly occupied antibonding orbital of ClO2 toward the fluorine atom.  相似文献   

6.
The ν1 fundamental band of FNO has been studied by the technique of CO laser Stark spectroscopy. The band origin was determined to be 1844.099 cm?1, and values for the rotational and centrifugal distortion constants of the (100) excited vibrational state were found. The ground state dipole moment components were determined to be μa = 1.690 and μb = 0.370 D, for a total dipole moment of 1.730 D, and a relatively large reduction (5%) was found in μ for the (100) state relative to the ground state.  相似文献   

7.
The rotational spectra of six excited vibrational states of dimethylallene were measured and assigned to the corresponding vibrational levels, and for three more excited state spectra at least the rotational constants could be determined. Between the two lowest excited levels of symmetry species b2 and b1 of group C2v a strong a-type Coriolis coupling was found to exist. The evaluation of the resulting perturbation by a diagonalization of the energy matrix yielded ζ(a) = 0.36 and a precise value for the vibrational energy difference 48.761 GHz (1.6 cm?1). The state b2 is believed to be the first excited torsional substate (01, 10)1 of methyl internal rotation, and the rotational transitions of this state as well as those of the strongly coupled state b1 presented very irregular multiplet splittings. On the other hand, the splittings of the next-higher excited state of species a2 which could be identified as the partner torsional substate (01, 10)2, followed the regular pattern, yielding an internal rotation barrier V3 (2079 cal/mole) not unlike that derived earlier from ground state splittings.  相似文献   

8.
The force constants of XeO3F2 have been evaluated using the general valence force field. The mean square amplitudes of vibration, the generalised mean square amplitudes and shrinkage constants, Coriolis coupling coefficients and centrifugal distortion constants have also been calculated for the first time using the vibrational frequencies and the structural parameters. The thermodynamic properties have been computed for the ideal gaseous state at 1 atmospheric pressure for 11 temperatures from 100° to 1000°K using a rigid rotor harmonic oscillator approximation.  相似文献   

9.
The cadmium vacancy (VCd) and the tellurium vacancy (VTe) in CdTe are identified by Electron Paramagnetic Resonance (EPR). The EPR spectrum of the singly ionised VTe reveals cubic (unpertubed) symmetry and the hyperfine structure shows that the unpaired electron is equally spread over the four Cd neighbors. Further figand hyperfine interactions with the more distant neighbors are resolved by Electron Nuclear Double Resonance (ENDOR). The VCd is a double acceptor and the EPR spectrum is observed in its singly negative charge state. The symmerty is found to be trigonal, which can be explained in a model in which the hole occupies a dangling bondt 2 orbital and the orbital degeneracy is removed by a static Jahn-Teller distortion. The hyperfine interaction shows that the hole is localised on one of the four Te neighbors.Paper presented at the 132nd WE-Heraeus-Seminar on Positron Studies of Semiconductor Defects, Halle, Germany, 29 August to 2 September 1994  相似文献   

10.
The millimeter- and submillimeter-wave spectrum of 13CD2F2 present in natural abundance in methylene fluoride-d2 (CD2F2) has been measured in the region 230-380 GHz. The spectrum was recorded using a frequency-modulated millimeter- and submillimeter-wave spectrometer. More than 200 rotational transitions in the ground state of 13CD2F2 with J≤45 and Ka≤8 have been assigned. A combined weighted least squares fit of the newly assigned transitions with previously reported microwave data has been carried out in the Watson's A- and S-reduced Hamiltonian. The data have been fitted with a standard deviation approaching the experimental accuracy, to provide improved values for the rotational and quartic centrifugal distortion constants, including sextic distortion constants for the ground state of 13CD2F2.  相似文献   

11.
The strongest vibrational satellites in the rotational spectrum of acrylonitrile have been assigned and frequencies of μa- and μb-type transitions in the frequency range 27–184 GHz are reported for the first two excited states in the lowest frequency in-plane CCN bending vibrational mode and the first excited state in the out-of-plane CCN bending mode. The values of the rotational constants, the quartic and sextic centrifugal distortion constants, and one octic centrifugal distortion constant are determined for each of these states. Less extensive results are also presented for the third quantum of the in-plane bend. The data set for the ground state has been extended by a number of new measurements and the improved ground state constants are used in a discussion of changes in rotational and centrifugal distortion constants with vibrational state where all constants associated with Pzn and P2Pz(n−2) terms in the Hamiltonian are found to reflect the common origin of the two CCN bends.  相似文献   

12.
It is now well-known that electron (hole)-vibron coupling and hence Jahn-Teller (JT) effect is important understanding the properties of C60 and related molecules. In this paper, we study H(2) coupling case to find the potential energy surfaces for the positively charged C60 molecule due to distortion. The H(2) Jahn-Teller system is of particular importance as this will be the JT effect displayed by C60 molecules removed with an electron. C60 + is obtained by removing one electron from fivefold degenerate Hu highest occupied molecular orbital (HOMO) and a hole in HOMO interacts with the vibrational modes of C60 and symmetry is broken. We apply the method of symmetry breaking mechanism to obtain expressions for the potential energy surface. Received 27 December 1999 and Received in final form 15 May 2000  相似文献   

13.
The energy levels and wave functions of the F-center in CaO and MgO have been calculated as function of the A1g and Eg displacements of the nearest neighbor ions of the oxygen vacancy. In CaO, the calculated level scheme partially supports the interpretation of published experimental data on the luminescence bands but there are significant discrepancies. The localization of the wave function of the 3T1u state is rapidly varying function of the A1g lattice distortion. The present calculations give a Jahn-Teller splitting of this state of between 0.15 and 0.2 eV.  相似文献   

14.
The ground state millimeter-wave spectra of CH3NCH2 and CD3NCD2 have been measured. The rotational constants, centrifugal distortion constants, and barrier hindering internal rotation of the methyl group have been determined for both species. For the parent species Iα and ?(i,a) were also obtained, and for the perdeuteriated species the quadrupole coupling constants of 14N were determined.  相似文献   

15.
The failure of selection rules on Ka, v, and vibronic symmetry in the visible band systems of NO2 are interpreted as resulting from the coupling of the excited electronic state with vibrational levels of the ground electronic state which are above the threshold for ergodic motion and therefore retain no quantization of those observables. This failure is shown to lead directly to the anomalous continuum fluorescence of NO2, and is intimately related to the anomalous lengthening of the radiative lifetime of the excited state (the Douglas effect). It is predicted that most molecules which exhibit anomalous lifetime lengthening will also exhibit anomalous selection rules and, consequently, anomalous continuum emission.  相似文献   

16.
The two lowest vibrational states of 35Cl35ClO2, v4=1 (A′) and v6=1 (A″), were investigated between 223 and 500 GHz. More than 250 rotational transitions were recorded with J and Ka up to 71 and 34, respectively. The spectra are heavily perturbed by strong c-type and weaker a-type Coriolis interactions. Near degeneracies of rotational levels of the two vibrational states having ΔJ=0, ΔKa=5 to 1, and ΔKaKc= odd cause moderate to severe perturbations in the rotational structure, preventing the states from being fit as isolated ones. Distortions in the hyperfine structure facilitated the assignment of rotational quantum numbers. Several resonantly interacting levels with ΔKa=5 to 2 were accessed, and a number of transitions between the states were observed. While resonant Coriolis interaction with ΔKa=1 occurs only at Ka>40, the effects of this interaction are so severe that nonresonant interaction considerably perturbs the highest KaQ-branches observed. The observed transitions could be fit to within experimental uncertainties employing the first-order Coriolis coupling constants fixed to those from the harmonic force field, sextic distortion constants fixed to those of the ground state, and some higher order Coriolis terms. The energy difference calculated from the fit agrees well with that obtained from the matrix-isolation infrared spectrum. Quadrupole coupling constants were determined for both Cl nuclei and both vibrational states.  相似文献   

17.
The microwave spectra of the ground state and several low-lying vibrational modes of 1,3-difluoroacetone have been assigned and analyzed. The assigned form has a molecular conformation in which one fluorine atom lies cis and the other trans to the oxygen atom. The rotational constants of the ground state species were determined using a centrifugal distortion analysis: A = 6024.843 ± 0.006 MHz, B = 2454.414 ± 0.001 MHz, C = 1783.897 ± 0.001 MHz. The molecular dipole moment components of the ground state species lie along the a and b principal axes with μa = 2.38 ± 0.03 D, μb = 0.89 ± 0.03 D, and μT = 2.54 ± 0.03 D. Comparative intensity measurements with OCS microwave lines indicate that the assigned form constitutes only 20% to 30% of the total gas mixture, the remainder presumably consisting of one or more other conformers, perhaps the gauche-gauche form. The lowest vibrational frequency (82 ± 12 cm?1) is attributed to the trans-CH2F torsion, while the next-higher vibrational frequency (127 ± 15 cm?1) is believed to be the cis-torsion. A low-frequency in-plane bending motion is found at 285 ± 25 cm?1.  相似文献   

18.
The high resolution (0.004cm?1) Fourier transform infrared spectrum of the monodeuterated form of methyl fluoride, CH2DF, has been recorded and analysed in the v 3 and v 4 band region around 1420cm?1. Both bands, coming from A′ symmetry vibrations, have a/b hybrid character, although in v 3 the b-type component prevails over the a-type. The rotational structure has been analysed using a dyad model including c-type Coriolis coupling and high order vibrational resonance between these states. Accurate upper state molecular parameters and interaction terms have been obtained by fitting about 3270 assigned transitions to Watson's A-reduced Hamiltonian in the Ir representation. In addition, from a simultaneous fit of ground state combination differences coming from this analysis and 42 literature microwave transitions, an improved and more complete set of ground state constants, including three new sextic centrifugal distortion terms (ΦJK, ΦKJ and ΦK), has been derived.  相似文献   

19.
The effect of the Jahn-Teller interaction on a symmetric top molecule with a threefold axis of symmetry in a 2S + 1E state has been investigated by perturbation theory. Contributions up to sixth order are included. Explicit formulae for various quantities have been derived on the assumption that there is only one Jahn-Teller active mode of vibration; both linear and quadratic Jahn-Teller interactions are considered. The quantities concerned are (i) the vibronic energy levels, (ii) the orbital quenching factor dt, (iii) the correction to the A-rotational constant, (iv) the correction to the spin-spin dipolar coupling term, and (v) the correction to the spin-rotation coupling constant εaa. Because the perturbation expansion converges slowly, the results are only applicable to molecules subject to a weak Jahn-Teller effect. There are several examples of this type of molecule which have been studied experimentally.  相似文献   

20.
Magnetic properties of the single crystal ferrite Ba2(Zn1-xCox)2Fe12O22 with O ? x ? 1, which has a trigonal symmetry around the c-axis, were investigated. The presence of Co ion strongly affects the properties of the Y-type ferrite: easy cone of magnetization, spin reorientation phase transition and first-order magnetization processes (FOMP) have been observed in this system. The observed effects as well as the origin of the magnetocrystalline anisotropy are discussed on the basis of a phenomenological analysis. The anisotropy constants K1, K2 and Kt trigonal of the ferrite are given versus temperature and composition. The magnetic phase diagram of a trigonal system is also presented. The condition for the existence of FOMP are obtained in term of the anisotropy constants ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号